Ordinary Differential Equation

1. Solve the following differential equations: (20%)
 (a) \(\frac{dy}{dx} = \frac{2x+y}{y^2+1} \)
 (b) \(\frac{dy}{dx} = \frac{y+2x+2}{z+y} \)
 (c) \(x^2y'' = y'(3x-2y') \)
 (d) \(y'' - y' - 2y = 4x^2 \)

2. Study the asymptotic behavior of the differential equation (10%)
 \[y'(x) = (y-1)(y-2)(y-3) \quad y(0) = c \in \mathbb{R} \]
 as \(x \to \infty \) without solving the equation. You need to separate the range of \(c \). Can you sketch the integral curve?

3. Use the method of variation of parameters to show that (20%)
 \[y(x) = c_1 \cos x + c_2 \sin x + \int_0^x f(\xi) \sin(x-\xi)d\xi \]
 is a general solution to the 2nd order differential equation
 \[y'' + y = f(x) \]
 where \(f(x) \) is a continuous function on \((-\infty, \infty)\).

4. Find the solution to the initial value problem (20%)
 \[x'(t) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} x + \begin{pmatrix} 2e^{5t} \\ 2e^{2t} \end{pmatrix}, \quad x(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \]

5. Apply the Laplace transform to solve the initial value problem (15%)
 \[y'' + 2ty' - 4y = 1, \quad y(0) = y'(0) = 0 \]

6. The Bessel function is defined by (15%)
 \[J_\nu(x) \equiv \frac{1}{\pi} \int_0^\pi \cos(\nu t - x \sin t)dt \quad -\infty < x < \infty, \quad \nu \in \mathbb{R} \]
 where \(f \) is a continuous and differentiable function. Show that when \(\nu \) is an integer then it satisfies the Bessel equation
 \[x^2J''_\nu(x) + xJ'_\nu(x) + (x^2 - \nu^2)J_\nu(x) = 0 \]

\(\overline{F 801 3-2} \)