Show All Work

1. (a) State the test for diagonalization. [5%]
 (b) State the Cayley-Hamilton Theorem. [5%]
 (c) State the Gram-Schmidt Process. [5%]
 (d) State the Schur Theorem. [5%]

2. Let $T : P_2(R) \to P_2(R)$ defined by $T(f(x)) = f(x) + (x+1)f'(x)$. Show that T is diagonalizable and find the matrices Q and D such that $Q^{-1}AQ = D$. [10%]

3. Let $T : R^2 \to R^2$ be the rotation by θ. Prove that T is a linear operator. Is T diagonalizable? Explain! [10%]

4. Let $B_1 \in M_{k\times k}(F)$, $B_2 \in M_{k\times(n-k)}(F)$, and $B_3 \in M_{(n-k)\times(n-k)}(F)$. Show that
 \[
 \det \begin{pmatrix} B_1 - tI_k & B_2 \\ 0 & B_3 - tI_{n-k} \end{pmatrix} = \det (B_1 - tI_k) \det (B_3 - tI_{n-k}).
 \] [10%]

5. Let T be a linear operator on a finite-dimensional vector space V, and let W be a T-invariant subspace of V. Define $T : V/W \to V/W$ by $T(v + W) = T(v) + W$ for any $v + W \in V/W$. Show that if both T_W and T are diagonalizable and have no common eigenvalues, then T is diagonalizable. [10%]

6. Let V be a finite-dimensional inner product space with an orthonormal ordered basis $\beta = \{v_1, \cdots, v_n\}$, T a linear operator on V, and the matrix $A = [T]_\beta$. Prove that, for all i and j, $A_{ij} = \langle T(v_j), v_i \rangle$. Give a direct proof. [10%]

7. Let $\| \cdot \|$ be a norm on a real vector space V satisfying the parallelogram law,
 \[
 \|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2.
 \]
 Define
 \[
 \langle x, y \rangle = \frac{1}{4} [\|x + y\|^2 - \|x - y\|^2].
 \]
 Show that
 (a) $\langle x, 2y \rangle = 2 \langle x, y \rangle$, for all $x, y \in V$. [5%]
 (b) $\langle x + u, y \rangle = \langle x, y \rangle + \langle u, y \rangle$, for all $x, u, y \in V$. [5%]

8. Let $A \in M_{m\times n}(F)$ and $b \in F^m$. Suppose that the system of equations $Ax = b$ is consistent.
 (a) Prove that $R(L_A^*) = N(L_A)$. [5%]
 (b) Prove that the minimal solution s to $Ax = b$ is in $R(L_A^*)$. [5%]
 (c) Find the minimal solution to
 \[
 \begin{align*}
 x + 2y - z &= 1, \\
 2x + 3y + z &= 2, \\
 4x + 7y - z &= 4.
 \end{align*}
 \] [5%]

9. Let T be a normal operator on a finite-dimensional real inner product space V whose characteristic polynomial splits. Show that V has an orthonormal basis of eigenvectors of T. Hence that T is self-adjoint. [10%]