Example (2.7)

For primitive statement p and q, construct a truth table for each of the following compound statements.

a) $\neg p \lor q$

b) $p \rightarrow q$

Here we see that the corresponding truth tables for two statement $\neg p \lor q$ and $p \rightarrow q$ are exactly the same.

Definition (2.2)

Two statement s_1, s_2 are said to be **logically equivalent**, and we write $s_1 \iff s_2$, when the statement s_1 is true (respectively, false) if and only if the statement s_2 is true (respectively, false).

From the table, we know that $\neg p \lor q \iff p \rightarrow q$.
Example (2.7)

For primitive statement p and q, construct a truth table for each of the following compound statements.

a) $\neg p \lor q$

b) $p \rightarrow q$

Here we see that the corresponding truth tables for two statement $\neg p \lor q$ and $p \rightarrow q$ are exactly the same.

Definition (2.2)

Two statement s_1, s_2 are said to be **logically equivalent**, and we write $s_1 \iff s_2$, when the statement s_1 is true (respectively, false) if and only if the statement s_2 is true (respectively, false).

From the table, we know that $\neg p \lor q \iff p \rightarrow q$.
Example (2.7)

For primitive statement p and q, construct a truth table for each of the following compound statements.

a) $\neg p \lor q$

b) $p \rightarrow q$

Here we see that the corresponding truth tables for two statement $\neg p \lor q$ and $p \rightarrow q$ are exactly the same.

Definition (2.2)

Two statement s_1, s_2 are said to be **logically equivalent**, and we write $s_1 \iff s_2$, when the statement s_1 is true (respectively, false) if and only if the statement s_2 is true (respectively, false).

From the table, we know that $\neg p \lor q \iff p \rightarrow q$.
Example (2.7)

For primitive statement p and q, construct a truth table for each of the following compound statements.

a) $\neg p \lor q$

b) $p \rightarrow q$

Here we see that the corresponding truth tables for two statement $\neg p \lor q$ and $p \rightarrow q$ are exactly the same.

Definition (2.2)

Two statement s_1, s_2 are said to be **logically equivalent**, and we write $s_1 \iff s_2$, when the statement s_1 is true (respectively, false) if and only if the statement s_2 is true (respectively, false).

From the table, we know that $\neg p \lor q \iff p \rightarrow q$.
Example (2.8)

Construct a truth table for each of the following statements

a) \(\neg(p \land q) \),

b) \(\neg p \lor \neg q \),

c) \(\neg(p \lor q) \),

d) \(\neg p \land \neg q \),

where \(p, q \) are primitive statements.

Here, a crucial difference emerges: The negation of the conjunction of two primitive statement \(p, q \) results in the disjunction of their negations \(\neg p, \neg q \), whereas the negation of the disjunction of these same statements \(p, q \) is logically equivalent to the conjunction of their negations \(\neg p, \neg q \).
Example (2.8)

Construct a truth table for each of the following statements

a) \(\neg(p \land q) \),

b) \(\neg p \lor \neg q \),

c) \(\neg(p \lor q) \),

d) \(\neg p \land \neg q \),

where \(p, q \) are primitive statements.

Here, a crucial difference emerges: The negation of the \textit{conjunction} of two primitive statement \(p, q \) results in the \textit{disjunction} of their negations \(\neg p, \neg q \), whereas the negation of the \textit{disjunction} of these same statements \(p, q \) is logically equivalent to the \textit{conjunction} of their negations \(\neg p, \neg q \).
For any primitive statements p, q, r, any tautology T_0, and any contradiction F_0,

1) $\neg
\neg p \iff p \quad \text{Laws of Double Negation}$

2) $\neg (p \lor q) \iff \neg p \land \neg q \quad \text{DeMorgan’s Laws}$
 $\neg (p \land q) \iff \neg p \lor \neg q$

3) $p \lor q \iff q \lor p \quad \text{Commutative Laws}$
 $p \land q \iff q \land p$

4) $p \lor (q \lor r) \iff (p \lor q) \lor r \quad \text{Associative Laws}$
 $p \land (q \land r) \iff (p \land q) \land r$

5) $p \lor (q \land r) \iff (p \lor q) \land (p \lor r) \quad \text{Distributive Laws}$
 $p \land (q \lor r) \iff (p \land q) \lor (p \land r)$
The Laws of Logic 2/2

6) \(p \lor p \iff p \) \hspace{1cm} \text{Idempotent Laws}
 \(p \land p \iff p \)

7) \(p \lor F_0 \iff p \) \hspace{1cm} \text{Identity Laws}
 \(p \land T_0 \iff p \)

8) \(p \lor \neg p \iff T_0 \) \hspace{1cm} \text{Inverse Laws}
 \(p \land \neg p \iff F_0 \)

9) \(p \lor T_0 \iff T_0 \) \hspace{1cm} \text{Domination Laws}
 \(p \land F_0 \iff F_0 \)

10) \(p \lor (p \land q) \iff p \) \hspace{1cm} \text{Absorption Laws}
 \(p \land (p \lor q) \iff p \)

Remark:

- \(T_0 = \text{tautology} \)
- \(F_0 = \text{contradiction} \)
Definition (2.3 Dual)

Let s be a statement. If s contains no logical connectives other than \land and \lor, then the **dual** of s, denoted s^d, is the statement obtained from s by replacing each occurrence of \land and \lor by \lor and \land, respectively, and each occurrence of T_0 and F_0 by F_0 and T_0, respectively.

Theorem (2.1 The Principle of Duality)

Let s and t be statements that contain no logical connectives other than \land and \lor. If $s \iff t$, then $s^d \iff t^d$.
Definition (2.3 Dual)

Let s be a statement. If s contains no logical connectives other than \land and \lor, then the **dual** of s, denoted s^d, is the statement obtained from s by replacing each occurrence of \land and \lor by \lor and \land, respectively, and each occurrence of T_0 and F_0 by F_0 and T_0, respectively.

Theorem (2.1 The Principle of Duality)

Let s and t be statements that contain no logical connectives other than \land and \lor. If $s \iff t$, then $s^d \iff t^d$.
2.2: Logical Equivalence: The Laws of Logic

Two substitution rules:

1) Suppose that the compound statement P is a tautology. If p is a *primitive* statement that appears in P and we replace each occurrence of p by the *same* statement q, then the resulting compound statement P_1 is also a tautology.

2) Let P be a compound statement where p is an arbitrary statement that appears in P, and let q be a statement such that $q \iff p$. Suppose that in P we replace one or more occurrences of p by q. Then this replacement yields the compound statement P_1. Under these circumstances $P_1 \iff P$.
Example (2.12)

Negate and simplify the compound statement \((p \lor q) \rightarrow r\).

Example (2.15)

Verify the following compound statements are logically equivalent:

a) \((p \rightarrow q) \iff (\neg q \rightarrow \neg p)\)

b) \((q \rightarrow p) \iff (\neg p \rightarrow \neg q)\)

The statement \(\neg q \rightarrow \neg p\) is called the **contrapositive** of the implication \(p \rightarrow q\). The statement \(q \rightarrow p\) is called the **converse** of \(p \rightarrow q\); \(\neg p \rightarrow \neg q\) is called the **inverse** of \(p \rightarrow q\).
Simplification of compound statements:

Example (2.16, 2.17, 2.18)

Let p, q, r, t denote primitive statements. Simplify each of the following compound statements:

a) $(p \lor q) \land \neg(\neg p \land q)$

b) $\neg[\neg[(p \lor q) \land r] \lor \neg q]$

c) $(p \lor q \lor r) \land (p \lor t \lor \neg q) \land (p \lor \neg t \lor r)$