Advanced Calculus (II)

Wen-Ching Lien

Department of Mathematics
National Cheng Kung University

2009
9.3: Continuous functions

Definition (9.22)

Let E be a nonempty subset of \mathbb{R}^n and let $f : E \to \mathbb{R}^m$.
(i) f is said to be continuous at $a \in E$ if and only if for every $\varepsilon > 0$ there is a $\delta > 0$ (which in general depends on ε, f, and a) such that

$$(3) \quad \|x - a\| < \delta \text{ and } x \in E \quad \text{imply} \quad \|f(x) - f(a)\| < \varepsilon.$$

(ii) f is said to be continuous on E (notation: $f : E \to \mathbb{R}^m$ is continuous) if and only if f is continuous at every $x \in E$.

Definition (9.23)

Let E be a nonempty subset of \mathbb{R}^n and let $f : E \to \mathbb{R}^m$. Then f is said to be \textit{uniformly continuous} on E (notation: $f : E \to \mathbb{R}^m$ is uniformly continuous) if and only if for every $\varepsilon > 0$ there is a $\delta > 0$ such that

$$\|x - a\| < \delta \quad \text{and} \quad x, a \in E \quad \text{imply} \quad \|f(x) - f(a)\| < \varepsilon.$$
Theorem (9.24)

Let E be a nonempty compact subset of \mathbb{R}^n. If f is continuous on E, then f is uniformly continuous on E.
Proof.

Suppose that f is continuous on E. Given $\varepsilon > 0$ and $a \in E$, choose $\delta(a) > 0$ such that

$$x \in B_{\delta(a)}(a) \text{ and } x \in E \text{ imply } \|f(x) - f(a)\| < \frac{\varepsilon}{2}.$$

Since $\delta(a)/2$ is positive for all $a \in E$, we can choose finitely many points $a_j \in E$ and numbers $\delta_j := \delta(a_j)/2$ such that

$$(4) \quad E \subset \bigcup_{j=1}^{N} B_{\delta_j}(a_j).$$

Set $\delta := min\{\delta_1, \ldots, \delta_N\}$.

Proof.

Suppose that \(f \) is continuous on \(E \). Given \(\varepsilon > 0 \) and \(a \in E \), choose \(\delta(a) > 0 \) such that

\[
x \in B_{\delta(a)}(a) \text{ and } x \in E \text{ imply } \|f(x) - f(a)\| < \frac{\varepsilon}{2}.
\]

Since \(\delta(a)/2 \) is positive for all \(a \in E \), we can choose finitely many points \(a_j \in E \) and numbers \(\delta_j := \delta(a_j)/2 \) such that

\[
E \subset \bigcup_{j=1}^{N} B_{\delta_j}(a_j)
\]

Set \(\delta := \min\{\delta_1, \ldots, \delta_N\} \).
Proof.

Suppose that f is continuous on E. Given $\varepsilon > 0$ and $a \in E$, choose $\delta(a) > 0$ such that

$$x \in B_{\delta(a)}(a) \text{ and } x \in E \text{ imply } \|f(x) - f(a)\| < \frac{\varepsilon}{2}.$$

Since $\delta(a)/2$ is positive for all $a \in E$, we can choose finitely many points $a_j \in E$ and numbers $\delta_j := \delta(a_j)/2$ such that

$$E \subset \bigcup_{j=1}^{N} B_{\delta_j}(a_j).$$

(4)

Set $\delta := \min\{\delta_1, \ldots, \delta_N\}$.

Proof.

Suppose that f is continuous on E. Given $\varepsilon > 0$ and $a \in E$, choose $\delta(a) > 0$ such that

$$x \in B_{\delta(a)}(a) \text{ and } x \in E \implies \|f(x) - f(a)\| < \frac{\varepsilon}{2}.$$

Since $\delta(a)/2$ is positive for all $a \in E$, we can choose finitely many points $a_j \in E$ and numbers $\delta_j := \delta(a_j)/2$ such that

$$E \subset \bigcup_{j=1}^{N} B_{\delta_j}(a_j).$$

Set $\delta := \min\{\delta_1, \ldots, \delta_N\}$.
Proof.

Suppose that \(f \) is continuous on \(E \). Given \(\varepsilon > 0 \) and \(a \in E \), choose \(\delta(a) > 0 \) such that

\[
\mathbf{x} \in B_{\delta(a)}(a) \text{ and } \mathbf{x} \in E \text{ imply } \| f(\mathbf{x}) - f(a) \| < \frac{\varepsilon}{2}.
\]

Since \(\delta(a)/2 \) is positive for all \(a \in E \), we can choose finitely many points \(a_j \in E \) and numbers \(\delta_j := \delta(a_j)/2 \) such that

\[
E \subset \bigcup_{j=1}^{N} B_{\delta_j}(a_j).
\]

Set \(\delta := \min\{\delta_1, \ldots, \delta_N\} \).
Proof.

Suppose that f is continuous on E. Given $\varepsilon > 0$ and $a \in E$, choose $\delta(a) > 0$ such that

$$x \in B_{\delta(a)}(a) \text{ and } x \in E \text{ imply } \|f(x) - f(a)\| < \frac{\varepsilon}{2}.$$

Since $\delta(a)/2$ is positive for all $a \in E$, we can choose finitely many points $a_j \in E$ and numbers $\delta_j := \delta(a_j)/2$ such that

$$E \subset \bigcup_{j=1}^{N} B_{\delta_j}(a_j). \tag{4}$$

Set $\delta := \min\{\delta_1, \ldots, \delta_N\}$.

Proof.

Suppose that f is continuous on E. Given $\varepsilon > 0$ and $a \in E$, choose $\delta(a) > 0$ such that

$$ x \in B_{\delta(a)}(a) \text{ and } x \in E \text{ imply } \|f(x) - f(a)\| < \frac{\varepsilon}{2}. $$

Since $\delta(a)/2$ is positive for all $a \in E$, we can choose finitely many points $a_j \in E$ and numbers $\delta_j := \delta(a_j)/2$ such that

$$ E \subset \bigcup_{j=1}^{N} B_{\delta_j}(a_j). $$

(4)

Set $\delta := \min\{\delta_1, \ldots, \delta_N\}$.

\[\square\]
Proof.

Suppose that \(x, a \in E \) and \(\|x - a\| < \delta \). By (4), \(x \) belongs to \(B_{\delta_j}(a_j) \) for some \(1 \leq j \leq N \). Hence,

\[
\|a - a_j\| \leq \|a - x\| + \|x - a_j\| < \delta_j + \delta_j = 2\delta_j = \delta(a_j),
\]

i.e., \(a \) also belongs to \(B_{\delta(a_j)}(a_j) \). It follows, therefore, from the choice of \(\delta(a_j) \) that

(5)

\[
\|f(x) - f(a)\| \leq \|f(x) - f(a_j)\| + \|f(a_j) - f(a)\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]

This proves that \(f \) is uniformly continuous on \(E \).
Proof.

Suppose that $x, a \in E$ and $\|x - a\| < \delta$. By (4), x belongs to $B_{\delta_j}(a_j)$ for some $1 \leq j \leq N$. Hence,

$$\|a - a_j\| \leq \|a - x\| + \|x - a_j\| < \delta_j + \delta_j = 2\delta_j = \delta(a_j),$$

i.e., a also belongs to $B_{\delta(a_j)}(a_j)$. It follows, therefore, from the choice of $\delta(a_j)$ that

(5)

$$\|f(x) - f(a)\| \leq \|f(x) - f(a_j)\| + \|f(a_j) - f(a)\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This proves that f is uniformly continuous on E. \qed
Proof.

Suppose that \(x, a \in E \) and \(\| x - a \| < \delta \). By (4), \(x \) belongs to \(B_{\delta_j}(a_j) \) for some \(1 \leq j \leq N \). Hence,

\[
\| a - a_j \| \leq \| a - x \| + \| x - a_j \| < \delta_j + \delta_j = 2\delta_j = \delta(a_j), \quad \text{i.e.,}
\]

\(a \) also belongs to \(B_{\delta(a_j)}(a_j) \). It follows, therefore, from the choice of \(\delta(a_j) \) that

(5)

\[
\| f(x) - f(a) \| \leq \| f(x) - f(a_j) \| + \| f(a_j) - f(a) \| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]

This proves that \(f \) is uniformly continuous on \(E \).
Proof.

Suppose that \(x, a \in E \) and \(\| x - a \| < \delta \). By (4), \(x \) belongs to \(B_{\delta_j}(a_j) \) for some \(1 \leq j \leq N \). Hence,
\[
\| a - a_j \| \leq \| a - x \| + \| x - a_j \| < \delta_j + \delta_j = 2\delta_j = \delta(a_j),
\]
i.e., \(a \) also belongs to \(B_{\delta(a_j)}(a_j) \). It follows, therefore, from the choice of \(\delta(a_j) \) that
(5)
\[
\| f(x) - f(a) \| \leq \| f(x) - f(a_j) \| + \| f(a_j) - f(a) \| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]

This proves that \(f \) is uniformly continuous on \(E \).
Proof.

Suppose that $x, a \in E$ and $\|x - a\| < \delta$. By (4), x belongs to $B_{\delta_j}(a_j)$ for some $1 \leq j \leq N$. Hence,

$$\|a - a_j\| \leq \|a - x\| + \|x - a_j\| < \delta_j + \delta_j = 2\delta_j = \delta(a_j),$$

i.e., a also belongs to $B_{\delta(a_j)}(a_j)$. It follows, therefore, from the choice of $\delta(a_j)$ that

(5)

$$\|f(x) - f(a)\| \leq \|f(x) - f(a_j)\| + \|f(a_j) - f(a)\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This proves that f is uniformly continuous on E.

☐
Proof.

Suppose that $x, a \in E$ and $\|x - a\| < \delta$. By (4), x belongs to $B_{\delta_j}(a_j)$ for some $1 \leq j \leq N$. Hence,

$$\|a - a_j\| \leq \|a - x\| + \|x - a_j\| < \delta_j + \delta_j = 2\delta_j = \delta(a_j),$$

i.e., a also belongs to $B_{\delta(a_j)}(a_j)$. It follows, therefore, from the choice of $\delta(a_j)$ that

$$(5) \quad \|f(x) - f(a)\| \leq \|f(x) - f(a_j)\| + \|f(a_j) - f(a)\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This proves that f is uniformly continuous on E.

\square
Proof.

Suppose that $x, a \in E$ and $\|x - a\| < \delta$. By (4), x belongs to $B_{\delta_j}(a_j)$ for some $1 \leq j \leq N$. Hence,

$$\|a - a_j\| \leq \|a - x\| + \|x - a_j\| < \delta_j + \delta_j = 2\delta_j = \delta(a_j),$$
i.e., a also belongs to $B_{\delta(a_j)}(a_j)$. It follows, therefore, from the choice of $\delta(a_j)$ that

(5)

$$\|f(x) - f(a)\| \leq \|f(x) - f(a_j)\| + \|f(a_j) - f(a)\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This proves that f is uniformly continuous on E.

\square
Proof.

Suppose that \(x, a \in E \) and \(\|x - a\| < \delta \). By (4), \(x \) belongs to \(B_{\delta_j}(a_j) \) for some \(1 \leq j \leq N \). Hence,

\[
\|a - a_j\| \leq \|a - x\| + \|x - a_j\| < \delta_j + \delta_j = 2\delta_j = \delta(a_j),
\]

i.e., \(a \) also belongs to \(B_{\delta(a_j)}(a_j) \). It follows, therefore, from the choice of \(\delta(a_j) \) that

\[
(5) \quad \|f(x) - f(a)\| \leq \|f(x) - f(a_j)\| + \|f(a_j) - f(a)\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]

This proves that \(f \) is uniformly continuous on \(E \).
Proof.

Suppose that \(x, a \in E \) and \(\| x - a \| < \delta \). By (4), \(x \) belongs to \(B_{\delta_j}(a_j) \) for some \(1 \leq j \leq N \). Hence,

\[
\| a - a_j \| \leq \| a - x \| + \| x - a_j \| < \delta_j + \delta_j = 2\delta_j = \delta(a_j), \text{ i.e.,}
\]
a also belongs to \(B_{\delta(a_j)}(a_j) \). It follows, therefore, from the choice of \(\delta(a_j) \) that

(5)

\[
\| f(x) - f(a) \| \leq \| f(x) - f(a_j) \| + \| f(a_j) - f(a) \| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]

This proves that \(f \) is uniformly continuous on \(E \).
Proof.

Suppose that $x, a \in E$ and $\|x - a\| < \delta$. By (4), x belongs to $B_{\delta_j}(a_j)$ for some $1 \leq j \leq N$. Hence,

$$\|a - a_j\| \leq \|a - x\| + \|x - a_j\| < \delta_j + \delta_j = 2\delta_j = \delta(a_j),$$

i.e., a also belongs to $B_{\delta(a_j)}(a_j)$. It follows, therefore, from the choice of $\delta(a_j)$ that

(5)

$$\|f(x) - f(a)\| \leq \|f(x) - f(a_j)\| + \|f(a_j) - f(a)\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This proves that f is uniformly continuous on E.

□
Proof.

Suppose that \(x, a \in E \) and \(\|x - a\| < \delta \). By (4), \(x \) belongs to \(B_{\delta_j}(a_j) \) for some \(1 \leq j \leq N \). Hence,

\[
\|a - a_j\| \leq \|a - x\| + \|x - a_j\| < \delta_j + \delta_j = 2\delta_j = \delta(a_j),
\]

i.e., \(a \) also belongs to \(B_{\delta(a_j)}(a_j) \). It follows, therefore, from the choice of \(\delta(a_j) \) that

\[
(5)\quad \|f(x) - f(a)\| \leq \|f(x) - f(a_j)\| + \|f(a_j) - f(a)\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]

This proves that \(f \) is uniformly continuous on \(E \).
Proof.

Suppose that $x, a \in E$ and $\|x - a\| < \delta$. By (4), x belongs to $B_{\delta_j}(a_j)$ for some $1 \leq j \leq N$. Hence,

$$\|a - a_j\| \leq \|a - x\| + \|x - a_j\| < \delta_j + \delta_j = 2\delta_j = \delta(a_j),$$
i.e., a also belongs to $B_{\delta(a_j)}(a_j)$. It follows, therefore, from the choice of $\delta(a_j)$ that

(5)

$$\|f(x) - f(a)\| \leq \|f(x) - f(a_j)\| + \|f(a_j) - f(a)\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This proves that f is uniformly continuous on E.

\qed
Theorem (9.25)

Let $n, m \in \mathbb{N}$ and $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$. Then the following three conditions are equivalent.

(i) f is continuous on \mathbb{R}^n.

(ii) $f^{-1}(V)$ is open in \mathbb{R}^n for every open subset V of \mathbb{R}^m.

(iii) $f^{-1}(E)$ is closed in \mathbb{R}^n for every closed subset E of \mathbb{R}^m.

\[\text{WEN-CHING LIEN} \quad \text{Advanced Calculus (II)} \]
Theorem (9.25)

Let $n, m \in \mathbb{N}$ and $f : \mathbb{R}^n \to \mathbb{R}^m$. Then the following three conditions are equivalent.

(i) f is continuous on \mathbb{R}^n.

(ii) $f^{-1}(V)$ is open in \mathbb{R}^n for every open subset V of \mathbb{R}^m.

(iii) $f^{-1}(E)$ is closed in \mathbb{R}^n for every closed subset E of \mathbb{R}^m.
Theorem (9.25)

Let \(n, m \in \mathbb{N} \) and \(f : \mathbb{R}^n \to \mathbb{R}^m \). Then the following three conditions are equivalent.

(i) \(f \) is continuous on \(\mathbb{R}^n \).

(ii) \(f^{-1}(V) \) is open in \(\mathbb{R}^n \) for every open subset \(V \) of \(\mathbb{R}^m \).

(iii) \(f^{-1}(E) \) is closed in \(\mathbb{R}^n \) for every closed subset \(E \) of \(\mathbb{R}^m \).
Theorem (9.25)

Let $n, m \in \mathbb{N}$ and $f : \mathbb{R}^n \to \mathbb{R}^m$. Then the following three conditions are equivalent.

(i) f is continuous on \mathbb{R}^n.

(ii) $f^{-1}(V)$ is open in \mathbb{R}^n for every open subset V of \mathbb{R}^m.

(iii) $f^{-1}(E)$ is closed in \mathbb{R}^n for every closed subset E of \mathbb{R}^m.

WEN-CHING LIEN

Advanced Calculus (II)
Theorem (9.26)

Let $n, m \in \mathbb{N}$, let E be open in \mathbb{R}^n, and suppose that $f : E \to \mathbb{R}^m$. Then f is continuous on E if and only if $f^{-1}(V)$ is open in E for every open set V in \mathbb{R}^m.
Example (9.27)

(i) If \(f(x) = \frac{1}{x^2+1} \) and \(E = (0, 1] \), then \(f \) is continuous on \(\mathbb{R} \) and \(E \) is bounded, but \(f^{-1}(E) = (-\infty, \infty) \) is not bounded.

(ii) If \(f(x) = x^2 \) and \(E = (1, 4) \), then \(f \) is continuous on \(\mathbb{R} \) and \(E \) is connected, but \(f^{-1}(E) = (-2, -1) \cup (1, 2) \) is not connected.
Theorem (9.29)

Let $n, m \in \mathbb{N}$. If H is compact in \mathbb{R}^n and $f : H \to \mathbb{R}^m$ is continuous on H, then $f(H)$ is compact in \mathbb{R}^m.
Theorem (9.30)

Let \(n, m \in \mathbb{N} \). If \(E \) is connected in \(\mathbb{R}^n \) and \(f : E \to \mathbb{R}^m \) is continuous on \(E \), then \(f(E) \) is connected in \(\mathbb{R}^m \).
Remark (9.31)

The graph $y = f(x)$ of a continuous real function f on an interval $[a, b]$ is compact and connected.
Theorem (9.32 Extreme Value Theorem)

Suppose that H is a nonempty subset of \mathbb{R}^n and $f : H \to \mathbb{R}$. If H is compact, and f is continuous on H, then

$$M := \sup\{f(x) : x \in H\} \quad \text{and} \quad m := \inf\{f(x) : x \in H\}$$

are finite real numbers. Moreover, there exist points $x_M, x_m \in H$ such that $M = f(x_M)$ and $m = f(x_m)$.
Theorem (9.33)

Let $n, m \in \mathbb{N}$. If H is a compact subset of \mathbb{R}^n and $f : H \to \mathbb{R}^m$ is 1-1 and continuous, then f^{-1} is continuous on $f(H)$.
Thank you.