- (a) The linear system Ax = b is solvable if and only if b belongs to the column (4%)
- (b) The following statements are equivalent:

(10%)

- (i) the solution of Ax = b is unique:
- (ii) Ax = 0 has no non-trivial solution;
- (iii) rank A = n.
- 2. Let A be an $n \times n$ matrix. Prove that A is positive semi-definite if and only if there exists an $n \times n$ matrix B such that $A = B^*B$. (10%)
- 3. Let T be a linear operator on V, dim $V = n < \infty$.
 - (a) Let W be a T invariant subspace of V (i.e. $T(W) \subseteq W$). If $\mathcal{B}' = \{v_1, v_2, \dots, v_k\}$ is a basis for W and $\mathcal{B} = \{v_1, \dots, v_k, v_{k+1}, \dots, v_n\}$ is a basis for V.

Find the relation of $\begin{bmatrix} T \end{bmatrix}_{\mathcal{B}}$ and $\begin{bmatrix} T |_{W} \end{bmatrix}_{\mathcal{B}'}$. (5%)

- (b) Show that the characteristic polynomial of $T|_{W}$ divides the characteristic polynomial of T. (5%)
- (c) For all $x \in V$, let W_x be the smallest T-invariant subspace containing x. Show that $\{x, T(x), \dots, T^{k-1}(x)\}$ is a basis of W_x for some integer k. (5%)
- (d) Let $\mathcal{B}' = \{x, T(x), \dots, T^{k-1}(x)\}$ (as (c)). Find $[T|_{W_k}]_{\mathcal{B}'}$. (5%)
- (e) State and prove the Caley-Hamilton theorem. (3°E)
- 4. Suppose f and g are continuous functions on [a, b].
 - (a) Show that if $g(x) \ge 0$ for all $x \in [a, b]$, then there exists $c \in [a, b]$ such that $\int_a^b f(x)g(x) dx = f(c) \int_a^b g(x) dx.$ (b) Show that the conclusion in (a) is false when the condition " $g(x) \ge 0$ " is (8%)
 - (5%)
- 5. Let $f_n:[0,1]\to\mathbb{R}$ be defined by $f_n(x)=\frac{x}{(1+x)^n}$ for $n=0,1,2,\ldots$
 - (a) Prove that $\sum_{n=0}^{\infty} f_n(x)$ is convergent for all $x \in [0,1]$. (4%)
 - (b) Is it uniformly conergent on [0, 1]? Justify your answer. (5%)
 - (c) Does $\int_0^1 \sum_{n=0}^{\infty} f_n(x) dx = \sum_{n=0}^{\infty} \int_0^1 f_n(x) dx$? (6%)
- 6. Evaluate the integral $\int_{D} \int \sin\left(\frac{y-x}{x+y}\right) dA$ where $D = \{(x,y) | 0 < x < y < 1-x\}.$ (10%)
- 7. Let m be the Lebesgue measure on \mathbb{R} , $f \in L^1(\mathbb{R})$ and define $g(x) = \int_{-\infty}^{\infty} f(t) dt$. Show that g is a continuous function and $\lim_{x \to a} g(x) = 0$.