PART I

1. Let (X, \mathcal{M}, μ) be a measure space. For $f \in L^1(\mu)$ and $g \in L^{\infty}(\mu)$, define

$$\phi_g(f) = \int f g \, d\mu.$$

Show that the mapping $g \mapsto \phi_g$ is not injective (one-to-one) from $L^{\infty}(\mu)$ to $(L^1(\mu))^*$ if μ is not semifinite. Here $(L^1(\mu))^*$ is the dual space of $L^1(\mu)$.

2. Let \mathcal{H} be a Hilbert space, $\{u_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ an orthonormal set in \mathcal{H} , and $\mathcal{M}=\operatorname{span}\{u_{\alpha}\}_{{\alpha}\in\mathcal{A}}$. Show that for all $x\in\mathcal{H}$,

$$x - \sum_{\alpha \in A} \langle x, u_{\alpha} \rangle u_{\alpha}$$

is perpendicular to \tilde{M} , the closure of M.

- 3. Let $E \subset \mathbb{R}$ be a Lebesgue measurable set with m(E) > 0. Show that for any $\alpha < 1$ there exists an open interval I such that $m(E \cap I) > \alpha m(I)$. Here m is the Lebesgue measure.
- 4. Let X be a locally compact Hausforf space. Show that if $\{U_n\}_1^\infty$ is a sequence of open dense subsets of X, then $\bigcap_{i=1}^{\infty} U_n$ is dense in X.
- 5. Show that if $f_n \to f$ almost uniformly, then $f_n \to f$ a.e. and in measure.

Part II.

6. Let S be a nonempty set of automorphisms of a field F. S is linearly independent provided that for any $a_1, \ldots, a_n \in F$ and $\sigma_1, \ldots, \sigma_n \in S$ $(n \ge 1)$:

$$a_1\sigma_1(u) + \cdots + a_n\sigma_n(u) = 0$$
 for all $u \in F \Rightarrow a_i = 0$ for every i.

Prove that if S is a set of distinct automorphisms of a field F, then S is linearly independent.

- 7. Let K be a commutative ring with identity. If A is an $n \times m$ matrix over K and B an $m \times n$ matrix over K, then $x^m P_{AB} = x^n P_{BA}$ where P_{AB} , P_{BA} are characteristic polynomials of the matrices AB, BA respectively. Furthermore, if m = n, then $P_{AB} = P_{BA}$.
- 8. Determine the structure of the abelian group G defined by generators a, b, c and relations 3a + 9b + 9c = 0 and 9a 3b + 9c = 0.
- 9. An element e in a ring R is said to be idempotent if $e^2 = e$. An element of the center of the ring R is said to be central. If e is a central idempotent in a ring R with identity, then
 - (a) $1_R c$ is a central idempotent;
 - (b) eR and $(1_R e)R$ are ideals in R such that

$$R = eR \times (\mathbf{1}_R - e)R.$$

10. A ring R is called a Boolean ring if $a^2 = a$ for every element a of R. If R is a Boolean ring and $a \in R$, prove that 2a = 0. Then prove that R is necessarily a commutative ring.