國立成功大學九十六學年度 博 士 班 基礎數學試卷 全一頁

一、本卷有試題 10 題,共 100 分。二、作答時請務必標清楚題號

Part I: Algebra

- 1. (10 points) Let G be a finite group and H a subgroup of G. Show that the order of G is divisible by the order of H.
- 2. (10%) Let G be a nonabelian group of order p^3 , p a prime.
 - (a) Show that the center of G is of order p, and
 - (b) Show that the center of G is equal to the commutator subgroup [G, G].
- 3. (10%) Let D be an principal ideal domain. Show that every nonzero prime ideal of D is also a maximal ideal.
- 4. (10%) Let K be a finite field and F a finite extension over K. Show that F is Galois over K and the Galois group of F over is a cyclic group.
- 5. (10%) Let V be a finite dimensional real inner product space with the inner product \langle , \rangle . For any unit vector $a \in V$, define $\rho_a : V \to V$ by $\rho_a(x) = x 2\langle a, x \rangle a$.
 - (a) Show that ρ_a is an isometry, i.e., $(\rho_a(x), \rho_a(y)) = \langle x, y \rangle$ for any $x, y \in V$.
 - (b) $\det \rho_a = -1$.

Part II: Analysis

- 1. (20 points)
 - (a) Let f be a real-valued function on [0,1] such that |f| is (Lebesgue) measurable and the set $\{x \in [0,1] \mid f(x) > 0\}$ is measurable. Prove that f is measurable.
 - (b) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function and let C be a closed subset of \mathbb{R} . Prove that f(C) is Lebesgue measurable.
 - (c) Let (X, μ) be a finite measure space and $f \in L^1(X, d\mu)$. Show that for any $\varepsilon > 0$ there is a $\delta > 0$ such that $|\int_E f(x) d\mu(x)| < \varepsilon$ for any measurable set $E \subset X$ such that $\mu(E) < \delta$.
 - (d) Let μ be a measure (on some measure space X) and let f_n , n = 1, 2, ..., be a sequence of real-valued measurable functions on X. Suppose that for every $\varepsilon > 0$, the sum

$$\sum_{n=1}^{\infty} \mu\{x \mid |f_n(x)| > \varepsilon\}$$

is finite. Prove that f_n converges to zero almost everywhere.

2. (10 points) The convolution of two functions $f, g \in L^1(\mathbb{R})$ is defined by:

$$f * g(x) = \int_{\mathbb{R}} f(x - y)g(y)dy.$$

- (a) Prove that the integral defining f * g exists almost everywhere in x (with respect to the Lebesgue measure).
- (b) Prove that $||f * g||_{L^1} \le ||f||_{L^1} ||g||_{L^1}$.
- 3. (10 points) Let I = (0.1). Suppose $\{f_n\}_{n=1}^{\infty}$ is a norm-bounded sequence of functions in $L^2(I)$ that converges in measure to a function f.
 - (a) Show that $f \in L^2(I)$ and $||f||_2 \le \liminf ||f_n||_2$.
 - (b) Show that $||f_n||_2$ converges to $||f||_2$ if and only if $||f_n f||_2 \to 0$.
- 4. (10 points) Let λ denote Lebesgue measure and let $f:[0,1] \to [0,1]$ be a differentiable function such that for every Lebesgue measurable set $A \subset [0,1]$ one has $\lambda(f^{-1}(A)) = \lambda(A)$. Prove that either f(x) = x or f(x) = 1 x (the derivative f' is not assumed to be continuous).