國立成功大學 106 學年度「碩士班」研究生甄試入學考試

【基礎數學】: Part II. 高等微積分

- 1. (20%)
 - (a) (10%) State the L'Hôpital's Rule
 - (b) (10%) State the Cauchy-Schwarz inequality for sequences
- 2. (10%) Let $E = \{(x, y, z) \mid 4 \le x^2 + y^2 + z^2 \le 9\}$. Compute

$$\iiint_E x^2 + y^2 + z^2 \ dV$$

- 3. (15%) Prove or disprove the following statements
 - (a) (5%) Every sequence in $\mathbb R$ contains a monotone (nondecreasing or nonincreasing) subsequence.
 - (b) (5%) Let $\{f_n\}$ be a sequence of continuous functions on [0,1] and converge pointwisely to a continuous function f on $\mathbb{Q} \cap [0,1]$. Then $\{f_n\}$ converges pointwisely to f on [0,1].
 - (c) (5%) Let $f: \mathbb{R} \to \mathbb{R}$ be a smooth function. Then there exists $\delta > 0$ such that

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

for $x \in (-\delta, \delta)$.

4. (35%) Let (X,d) be a complete metric space and $f:\mathbb{R}^n\to X$ be a function with

$$d(f(x), f(y)) \le C||x - y||$$

where $\|\cdot\|$ is the usual norm in \mathbb{R}^n and C>0 is a constant.

- (a) (5%) Prove that f is uniformly continuous.
- (b) (10%) Let $\{x_n\}$ be a bounded sequence in \mathbb{R}^n . Prove that there exists a convergent subsequence of $\{f(x_n)\}$ in X.
- (c) (10%) If $g: \mathbb{R}^n \to \mathbb{R}^n$ is differentiable with $||Dg(x)|| < \frac{1}{2}$ for all $x \in \mathbb{R}^n$, prove that there exists $x_0 \in \mathbb{R}^n$ such that $g(x_0) = x_0$.
- (d) (10%) Define $h: \mathbb{R}^n \to \mathbb{R}^n$ by h(x) = x + g(x). Prove that h is one to one on \mathbb{R}^n .
- 5. (20%) Let $k(x): \mathbb{R}^n \to \mathbb{R}$ be a smooth and nonnegative function with integral 1. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous function with $|f(x)| \le e^{-||x||}$ for every $x \in \mathbb{R}^n$. For $\epsilon > 0$, define $k_{\epsilon}(x) = \epsilon^{-n} k(\frac{x}{\epsilon})$ and $f_{\epsilon}(x) := \int_{\mathbb{R}^n} k_{\epsilon}(y) f(x-y) dy$. Prove that $f_{\epsilon} \to f$ uniformly as $\epsilon \to 0$.

國立成功大學 106 學年度「碩士班」研究生甄試入學考試 【基礎數學】: Part I. 線性代數

Note: \mathbb{R} denotes the field of real numbers, and n denotes a positive integer.

- 1. (10%) Is there a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ such that T(1, -2, 0) = (1, 1), T(3, -5, 1) = (2, 3), and T(-1, 3, 1) = (3, 0)? Justify your answer.
- 2. (15%) Let V be the vector space of all polynomials of degree at most n with real coefficients. For $i=0,1,\ldots,n$, let $p_i(x)=x^i+x^{i+1}+\cdots+x^n\in V$. Show that $\{p_0(x),p_1(x),\ldots,p_n(x)\}$ is a basis for V.
- 3. (20%) Let A be an $n \times n$ real matrix such that $A^2 = A$. Show that the trace of A is equal to the rank of A. Is A similar over \mathbb{R} to a diagonal matrix? Justify your answer.
- 4. (20%) Let T be a linear operator on a finite-dimensional vector space such that $\operatorname{rank}(T^2) = \operatorname{rank}(T)$. Show that $\operatorname{N}(T) \cap \operatorname{R}(T) = \{0\}$. (Here $\operatorname{N}(T)$ and $\operatorname{R}(T)$ are the null space and the range of T respectively.)
- 5. (15%) Let V be the vector space of all polynomials of degree at most 3 with real coefficients. Let D be the linear operator on V defined by D(p) = p' for $p \in V$. Find the Jordan form of D.
- 6. (20%) Let T and U be linear operators on an n-dimensional vector space V. Suppose that $\{v, T(v), \ldots, T^{n-1}(v)\}$ is a basis for V for some $v \in V$, and that TU = UT. Show that U = p(T) for some polynomial p.