國立成功大學 83 學年度應數所 考試(高等敘孩分試題)第 / 頁

Answer all questions (100%)

- 1. (a) If B is bounded in \mathbb{R}^m and $f: B \to \mathbb{R}^n$ is uniformly continuous, show that f is bounded on B. (10%)
 - (b) Show that $f(x) = \tan x$ is not uniformly continuous on $[0, \frac{\pi}{2})$ (10%)
- 2. (a) Let $x_1 = 1$ and $x_{n+1} = (2 + x_n)^{\frac{1}{2}}$ for $n \in \mathbb{N}$. Show that $\lim_{n \to \infty} x_n$ exists. What is the limit? (10%)
 - (b) Show that the convergence of $\sum_{n=1}^{\infty} a_n$ implies the convergence of $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n^p}$ if $a_n \ge 0$, and $p > \frac{1}{2}$ (10%)
- 3. (a) Let a < c < b and $g(x) = \begin{cases} 0, & a \le x \le c \\ 1, & c < x \le b \end{cases}$. Show that f is integrable with respect to g over [a, b] if and only if $\lim_{x \to c^+} f(x) = f(c)$. (10%)
 - (b) Find the Riemann-Stieltjes integral $\int_0^5 x^3 d(x^2 + [x]) dx$. (10%)
- 4. (a) Show that $f(x) = \begin{cases} x \sin \frac{\pi}{x}, & 0 < x \le 2 \\ 0, & x = 0 \end{cases}$ is continuous, but isn't a function of bounded variation on [0, 2]. (10%)
 - (b) Compute the total variation of f(x) = [x] x, $0 \le x \le 2$. (10%)
- 5. (a) Let $S = \{(x,t) : a \le x \le b, c \le t \le d\}$, and $f: S \to \mathbb{R}$ be a continuous function. Define $F: [c,d] \to \mathbb{R}$ by $F(t) = \int_a^b f(x,t)dx$. Show that F is continuous. (10%)
 - (b) In (a), if f and its partial derivative $\frac{\partial f}{\partial t}$ are continuous on S then F has a derivative on [c,d] and

$$F'(t) = \int_a^b \frac{\partial f(x,t)}{\partial t} dx.$$

(10%)