1. Recall that for a sequence $\{x_n\}_1^{+\infty}$ in \mathbb{R} , $\liminf_{n\to+\infty} x_n$ is defined to be

$$\lim_{n \to +\infty} \inf x_n = \lim_{n \to +\infty} \left(\inf_{k \ge n} x_k \right)$$

Show that if $\lim_{n\to+\infty} y_n$ exists in \mathbb{R} , then for any sequence $\{x_n\}_1^{+\infty}$ in \mathbb{R} , one has $\liminf_{n\to+\infty} (x_n+y_n) = \liminf_{n\to+\infty} x_n + \lim_{n\to+\infty} y_n$.

- 2. Suppose $\{f_n\}_1^{+\infty}$ is a sequence of continuous functions on $[0, +\infty)$. Suppose also there is a function g such that for any $n \in \mathbb{N}$, $|f_n(x)| \leq g(x)$ on $[0, +\infty)$ and $\int_0^{+\infty} g(x)dx$ converges. Prove that if $\{f_n\}_1^{+\infty} \to f$ uniformly on [0, L) for any L > 0, then $\lim_{n \to +\infty} \int_0^{+\infty} f_n(x)dx = \int_0^{+\infty} f(x)dx$.
- 3. (a) Suppose $f:[0,+\infty)\to [0,+\infty)$ is continuous and $\int_0^{+\infty}f(x)dx<+\infty$. Does it follow that $\lim_{x\to+\infty}f(x)=0$? Support your statement with either a proof or a counterexample.
 - (b) If the continuity on f in (a) is replaced by uniform continuity, does it follow that $\lim_{x\to +\infty} f(x) = 0$? Support your statement with either a proof or a counterexample.
- 4. Let f(x,y) be a real-valued function on \mathbb{R}^2 which has continuous second partial derivatives. Show that f is harmonic if and only if

$$\int_{C} \left(\frac{\partial f}{\partial x} dy - \frac{\partial f}{\partial y} dx \right) = 0$$

for all circles C in the counterclockwise direction in \mathbb{R}^2 . (Recall that f is harmonic if and only if $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \equiv 0$ on \mathbb{R}^2 .)

5. Let E be a region in \mathbb{R}^2 which is bounded by 3y - x = 0, 3y - x + 1 = 0, y + 2x = 0, and y + 2x - 1 = 0. Evaluate

$$\iint_{E} \sqrt[3]{2x^2 - 5xy - 3y^2} d(x, y).$$
 15%

- 6. Let $f(x, y) = (x + y, \sin x + \cos y), (x, y) \in \mathbb{R}^2$.
 - (a) Show that a differentiable f^{-1} exists on some open set containing (0,1). 10%
 - (b) Compute the matrix representation relative to the standard basis on \mathbb{R}^2 for the total derivative of f^{-1} at (0,1).