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|
State the problem

Let (X, d, ) be a metric space endowed with a nonnegative Borel measure p
satisfying the doubling condition: there exists a constant C > 0 such that

p(B(x,2r)) < Cu(B(x,r)) (1)

for all x € X, r > 0 and all balls B(x,r) :={y € X : d(x,y) < r}.
In this talk we shall also assume that

pB(x;r)) 2 r" (2)

for all x € X and r > 0 and for some n > 1.

Examples of doubling spaces: Euclidean space R" with Lebesgue measure;
convex domain Q C R"” with Lebesgue measure.
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|
State the problem

Let L be a nonnegative self-adjoint operator on L?(X). Suppose that L satisfies
an L' — L*° dispersive estimate of the form

le™ [l spoe S 1872 (3)

This is frequently the case for many important operators, notably the Laplacian
L = —A and its potential perturbations.

We note that the dispersive estimate is a useful property in the study of pdes.
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|
State the problem

Question: Is it possible to deduce similar estimates for the more general class of
flows eft?(L):

I (L)e™ Oy S (270 (4)

for appropriate functions ¢ and ¢ ?

For instance, if we choose ¢(L) = v/L, we are asking if a dispersive estimate for

the wave flow e/VL can be deduced directly from a corresponding estimate for the
Schrodinger flow et

Xuan Thinh Duong (Macquarie University) Dispersive estimates 4/32



|
Remarks

e The estimate (4) implies the following estimate:
e f = S e F |2

where X is some function space such as Besov spaces and Sobolev spaces.

e The flows e/t with v € (0,1] have a strong connection with the fractional
Schrodinger equation:

ur+il"u=0, wu(0,)="f.

e In particular, when ¢(L) = /L, the estimate (4) implies the following
estimate:
eitVL J
fll, st
| S el

vl

which tells us the behavior of the solutions to the wave equation

Upt + Lu= 07 uf(o? ) = f: U(Of ) =8
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Our assumptions

We assume the following conditions on the nonnegative self-adjoint operator L:

(A1) The Schrodinger flow et satisfies a dispersive estimate:
le®lli e S 11772, [t € (0, To)

where Ty € (0, +00].

(A2) The kernel p;(x,y) of e~tt admits a Gaussian upper bound: 3C, ¢ > 0 such
that for all x,y € X and t > 0,

9 d(x,y)?
|pt(x,y>\sN(B(X?ﬁ))exp(— ).
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Our assumptions

Let ¢ : RT™ — R be a smooth function. We denote by (H1) and (H2) the
following assumptions on ¢:

(H1) There exists 0 < my < 1 such that
¢'(r) ~r™m=t and |¢"(r)| = ™72 r>1.
(H2) There exists mp > 0 such that

()~ ™t and |¢"(0)] 2™ 0<r<1.

e Some examples: if ¢(r) = r” with v € (0,1), then (H1) and (H2) are satisfied
with my = mp = v. If ¢(r) = V1 + r?, then (H1) and (H2) are satisfied with
my =1 and my, = 2.
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N
Tools

The following formula is important for our result.
e Subordination formula:

Theorem ([BDDM])

Assume ¢ satisfies (H1) and g is a C* function supported in [1/2,2]. Then there
exist g > 1, and suitable functions p.(x, \) and a;(s,\) so that

gATIVX)e™ ) = py(x, A) + VEAZ™ p(A72x) / e N a5, \)ds  (5)

for all x,t > 0 and A\ > 1, where n € C*°(R) is supported in [1/5,5] and n =1 on
[1/4,4].

We have a similar formula for the case 0 < A < 1.

[BDDM] The Anh Bui, Piero D'Ancona, Xuan Thinh Duong and Detlef Miiller, On
the flows associated to self-adjoint operators on metric measure spaces, preprint.
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Proof.

Let k € Z and t > 0. For A > 1 we denote by V(&) the Fourier transform of
g\ VX)) e,

V(O = [ VR e
:)\2/g(ﬁ)ei[tqﬁ(/\%)f/\zuf]du.

Let 7 € C=(R) supported in [2¢; !, 2co] with 7 =1 in [c; ', co] where ¢y will be
determined later. Then by the Fourier inversion formula we have

2R =i ) [ (17 ((hs ) ) a0

+ (A7) / T(ﬁ)%(&)e’&dé
= pt(Xv >‘) + At(Xa >‘)

where 7 € C*°(R) is supported in [1/5,5] and n =1 on [1/4,4].

(6)
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Observe that
Du[td(N2u) — N2u€] = Nt/ (N2u) — N3¢

We note that the integrand in the expression for p;(x, A) is supported where either
€< g1 tA?™M =2 or £ > otA2™ =2 In this situation, by (H1) we can choose ¢
large enough so that

Dl6(X20) — X2ug]| 2 (A2[¢] + A>™)
Hence, by integration by parts in (6), we have for these & that

[WA(E)] € CrgoN2(NE| + tA2™)7K Wk >0,A > 1.

This implies

‘pt(xv)‘)| < Ckyga¢(t)‘2m1)_k7 k > 0.
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We now estimate the term A;(x, A). By a change of variables, we have
Ad(x, A) = EA2M=2p(\~2) / £(5)W (£N2™—25) N s g
= 2 (A2x) / r(s)ert s / g(/)elt — 3 us] g g
\/L‘)\T’"ln()\_zx)/e"mzmlizsat(s,/\)ds

where

a(s,\) = Vexzm / '[w(AZ) tX*us] g

It is clear that supp a(-, A) C [2¢5 1,2c0]. Moreover, on the support of g we have
1/4 < u < 4. In this situation, by (H1) we have

‘ - 2[t¢ (\2u) — £X2™ ys]| > £x2m,

It then follows that

|at(X, )\)‘ 5 1.

This implies |a(s, \)| < 1 for all s € [2¢; %, 2¢0] and A > 1. This proves the
required estimate.
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N
Tools

Due to the lacking of regularity assumption on the behaviour of the kernels of the
semigroup e~ L, the standard Hardy space, Besov spaces ... might not be the
appropriate setting for the dispersive estimates for L. An appropriate replacement
is using function spaces associated to operators.

e Hardy spaces associated to operators:

Definition
Let 0 < p <1and M e N. A function a(x) supported in a ball B C X of radius
rg is called a (p, 2, M, L)-atom if there exists a function b € D(LM) such that
(i) a= LMbp;
(ii) supplkbC B, k=10,1,..., M;
(iii) |[LKB]| 2y < rAM T u(B)Y2 1P, Kk =0,1,..., M.

[HLMMY] S. Hofmann, G. Lu, D. Mitrea, M. Mitrea and L. Yan, Hardy spaces
associated to non-negative self-adjoint operators satisfying Davies-Gaffney
estimates, Mem. Amer. Math. Soc. 214 (2011)
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Tools: Hardy spaces associated to operators

Definition (Atomic Hardy spaces for L)
Given 0 < p <1 and M € N, we say that f = " \;a; is an atomic
(p,2, M, L)-representation if {)\;}2, € (”, each aj is a (p,2, M, L)-atom, and the
sum converges in L?(X). The space Hf _, ,(X) is then defined as the completion
of

{f € L%(X) : f has an atomic (p,2, M, L)—representation} ,

with the norm given by

||f||i’fat L0 = inf {Z NP f = Z \jaj is an atomic (p,2, M, L)—representation} .

13 /32
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Example: Let L = —A + |x|?> on R". Let p(x) = min{1, x|~} for x € R". Let
p € (0,1]. A function a is called a (p, 0, p)-atom associated to the ball B(xo, r) if

(i) suppa C B(xp, r);
(i) [lalle < [B(xo, r)[72/P;
(i) /x"‘a(x)dx — 0 for all |a] < [n(1/p — 1)] if r < p(x0)/4.

The Hardy space H, ,(R") is then defined as the set of all functions f which can
be expressed in the form f = 3. \;a; where ();); € €7 and a; are (p, o0, p)-atoms.
Its norm is given by

1120 oy = {1 F = 3" Na )
j j

where the infimum is taken over all possible atomic decompositions of f. Then we
have HP(R") & Hft’p(R”) = H}(R") for all p € (0,1].
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|
Tools
e Besov spaces associated to operators

Fix a Littlewood—Paley dyadic partition of unity W = {¢;};cz on R, i.e., ¢ € S(R)
such that suppy) C [1/2,2] and

> 4(277X) =1 on (0,0).

JEZ

and define for all s € R, 1 < p, g < oo the Besov space B;;’C;(X) as the completion
of the set

{f e 2(X): Fllgy < oo}

for the norm || - || g-.. given by
P.q

B { 2 <2js“"@j(ﬂ)f\\LP>q }1/q.

jez

If]

We note that this definition is independent of the choice of W.
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N
Main results

The following are our main results.
Theorem ([BDDM] (High frequency estimate))

Assume L satisfies (A1) and (A2), ¢ satisfies (H1), and ¢ € C*°(R) is supported
in [1/2,2]. Then we have

[1h(A 1\/>) itp(L

NP gl A > ] < To. (D)

Theorem ([BDDM] (Low frequency estimate))

Assume L satisfies (A1) and (A2), ¢ satisfies (H2), and 1) € C*°(R) is supported
in [1/2,2]. Then we have

[WATIVL)eMDF| < [t =7 AA=mrim ], 0 <A< 1, [t] < To.  (8)
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We give the proof for the case of high frequency dispersive estimate:
From the subordination formula and spectral theory, there exist functions p, a and
1 as in the subordination formula so that

w()\—lﬁ)eitqs(L) = pe(L, ) + \/MT”UT)()CZL)/eit/\Q'"l_zsLat(S, \)ds
= pe(L, A) + Aea(L).

We first estimate the term related to A; x(L). By using (A1), (A2) and estimates
on a; we have

2¢cp
AcA (Dl 1 S VAZRIENZM=24]71/2 / s"/2|ay(s, \)|ds
2¢57 "
n—1

<t T /\(l—ml)n+m1 )
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We now take care of the term p¢(L, A). Let ¢ € C*°(R) with supp ¢ C [1/6,6]
and ¢ = 1in [1/5,5]. Since p:(-, \) is supported in [A\2/5,5)?], we have

pe(L,A) = (AW L)pe(L, \)p(A VD).
Therefore,
1oe(L N |51 < oAV sz lpe(L A 2o 2]l o VL [ 225 1o

We now estimate || @A~V L) |12 and ||@(A~1V/L) |21 by using the
Gaussian upper bound and obtain

IO VDlluse SA2 and e VDllpoe SAY2(9)
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By using the properties of p;(x, ) in the subordination formula, we deduce that
n—1
lpe(L M) 2z < flpe( Ml S (™)~
Therefore,

n—1

Ipe(L Dl sioe S A" (N2ME) ™57 = ¢ 7 AQ—mmem,

Summing up, we have proved that

n—

7 \(Lmmntm -y s g (10)

[pAVL) ™D |y ST

This completes our proof.
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A case study: dispersive estimates for fractional
Schrodinger semigroups

Theorem ([BDDM])

Let L satisfy (A1) and (A2), and let v € (0,1). Assume that ) € C=(R) is
supported in [1/2,2]. Then we have

(WA L)e!

e In the classical case L = —A, the decay rate in (11) ~ t~"z as v = 1/2 and
~tTrasv#£1/2

e The estimate (11) is sharp in the sense that for each v € (0,1),v # 1/2 we can
construct an operator L such that et has a decay rate ~ t~2 while e™t” decays
like ~ t="=" at best in general.

A= £ X >0, |t < To. (11)
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We have the following theorem.
Theorem ([BDDM])

Let L satisfy (A1) and (A2), and let v € (0,1).
(i) Fors > (1 —v)n+v,

—1

e Fllee S 1t 10+ L) F s, [t < To.
(ii) Forpe (0,1) ands=n(l/p—v)+v,

n—

S L2 | e, It < To.

el < Jt1
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Remarks:

(a) The estimate (ii) is new. To the best of our knowledge, this is the first
H} — L dispersive estimate in the literature.

(b) In the particular case when L = —A, the estimates (i) and (ii) can be
improved as follows: for all v € (0,1)\{1/2},
™ Fllewe S 1617200+ L) 2F I, s > (1), (12)
and _
1™ Fll= < [t % IL/*Fllme, p € (0,1],5 = n(1/p — v), (13)

where HP is a classical Hardy space. To the best of our knowledge, the
estimates (12) and (13) are new.
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We have the following result for the case v = 1/2.
Theorem ([BDDM] )

Let L satisfy (A1) and (A2).

(i) Fors> "1, we have

U < 0 0, <
17 .
\/Z . ~ L 0
(ii) Forp € (0,1] and s = n(% —1)— 1, we have
eitﬂ

f

ST N2, It < To.
Loc

VL
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Note that the decay \t\*"Tl is sharp. Compare with the following estimate from
[Beals, 1994] (see also [B. Marshall, W. Strauss, and S. Wainger, 1980]) for
L = —A + V with small potentials V € S(R"),n > 3:

eitﬂ
VL

We see that estimate (ii) is new for 0 < p < 1 even when L = —A.

n—1
5

Fll S 7 (0= D), s=

[ oo

(14)
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The following estimate concerns the Besov norm associated to operator L.
Theorem ([BDDM])
Let L satisfy (A1) and (A2), and let v € (0,1). Then we have

He"fL”fHLm Sl [ e (15)
In the particular case v = % we get
eitvVL e
7 f N St IIfIIBI?I,L- (16)
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Applications

1. Hermite operators. Let L = —A + |x|2 be the Hermite operator on R” with
n > 1. It is well-known that for any § > 0 there exists C > 0 so that

. C .
||e’tL||,_1_>,_oc < T2 |t| <7m/2— 6.

Theorem ([BDDM])

Let L = —A + |x|? be the Hermite operator on R" with n > 1. Then we have

n—

=L ||, | <m/2-0

e | < Jt1

for p € (0,1) and s = n(1/p —v) + v; and

eitVL -
Fll St 7 ([P, [t <7/2—0
oS e <
forp6(071)and5:n(%_%)_%_
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We can show that HP(R") & H[(R"). See [J. Dziubariski, 1998]. Hence the
estimate above is sharper than the following estimates:

e Fllie S 6752 L5/ |l o, [e] < /20

for pe (0,1) and s =n(1/p —v) +v; and
eitVL
i

for p€(0,1) and s = n(3 — 3) + 3.

St T L2 F e, |t <7/2—6

[ oo

f'

Dispersive estimates
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We can prove that B?(R) C Bf_’f(]R) and val(ﬂ%”) = Bls:lL(]R”) for 0 <'s <2 and
n > 1. Hence, from the estimate

eitﬂ e
Wf St ||stl"%1,L (17)
Loo .
we obtain:
eitvL -
f St 7 ||f|| a2, n=1,2,3,4.
VL ||, 87
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2. Laguerre operators: Consider the space X = (0, 00)" equipped with the
Euclidean distance d and measure p given by du(x) = dui(x) ... dus(x) where
dpg = ;" dx, o > —1for k=1,...,n.

It is easy to see that
n

u(B(x,r)) ~ JJ(r +x)**r (18)
k=1
where B(x,r) = {y € X : |[x — y| < r} is the ball centered in x = (x1,x2, ..., Xn)

with radius r. It follows that the measure p satisfies the doubling condition (1).
Moreover, if ay > —1/2 for all k, then we have

w(B(x,r)) =N, N=2n+ ZQ(}’;( >1
k=1

for all x € X and r > 0.
We now consider the Laguerre operator L defined by

" 2ar+1 d 5
L=-A— — . 1
> g (19)

It is well known that the Laguerre operator satisfies (A1) and (A2).
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We have the following result concerning Laguerre operator.
Theorem ([BDDM])

Let a > —1/2 for all k =1,...,n and let L be the Laguerre operator defined by
(19). Then we have

€™ Fllie S 177 1L/ llpp, [t < 7/2 -6

forp € (0,1] ands = N(1/p —v) + v, and

eitﬂf < |t|_%||LS/2fH It <7/2—6
P7 T —

vl H;

for p € (0,1) andszN(%_%)_%_
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Since Hg,, (X) S HP(X) for
estimates above imply:

N+1

. v
le™ Flli= < 16177 L2 e, .

for p € (i7,1) and s = N(1/p — v) 4 v; and
itv/L B
ol REL G
L .

for pe (fi. 1) and s = N3 — 1)+ 3
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[t| <7/2 =6

t| <m/2—6

< p <1 (see [Bui-Duong-Ly, 2016]). Hence the
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THANK YOU!
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