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State the problem

Let (X , d , µ) be a metric space endowed with a nonnegative Borel measure µ
satisfying the doubling condition: there exists a constant C > 0 such that

µ(B(x , 2r)) ≤ Cµ(B(x , r)) (1)

for all x ∈ X , r > 0 and all balls B(x , r) := {y ∈ X : d(x , y) < r}.
In this talk we shall also assume that

µ(B(x , r)) & rn (2)

for all x ∈ X and r > 0 and for some n ≥ 1.

Examples of doubling spaces: Euclidean space Rn with Lebesgue measure;
convex domain Ω ⊂ Rn with Lebesgue measure.
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State the problem

Let L be a nonnegative self–adjoint operator on L2(X ). Suppose that L satisfies
an L1 − L∞ dispersive estimate of the form

‖e itL‖L1→L∞ . |t|−a. (3)

This is frequently the case for many important operators, notably the Laplacian
L = −∆ and its potential perturbations.

We note that the dispersive estimate is a useful property in the study of pdes.
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State the problem

Question: Is it possible to deduce similar estimates for the more general class of
flows e itφ(L):

‖ψ(L)e itφ(L)‖L1→L∞ . |t|−b (4)

for appropriate functions ψ and φ ?

For instance, if we choose φ(L) =
√
L, we are asking if a dispersive estimate for

the wave flow e it
√
L can be deduced directly from a corresponding estimate for the

Schrödinger flow e itL.
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Remarks

• The estimate (4) implies the following estimate:

‖e itφ(L)f ‖L∞ . t−c‖f ‖X

where X is some function space such as Besov spaces and Sobolev spaces.

• The flows e itL
ν

with ν ∈ (0, 1] have a strong connection with the fractional
Schrödinger equation:

ut + iLνu = 0, u(0, ·) = f .

• In particular, when φ(L) =
√
L, the estimate (4) implies the following

estimate: ∥∥∥e it√L

√
L

f
∥∥∥
L∞

. t−d‖f ‖X

which tells us the behavior of the solutions to the wave equation

utt + Lu = 0, ut(0, ·) = f , u(0, ·) = g .
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Our assumptions

We assume the following conditions on the nonnegative self–adjoint operator L:

(A1) The Schrödinger flow e itL satisfies a dispersive estimate:

‖e itL‖L1→L∞ . |t|−n/2, |t| ∈ (0,T0)

where T0 ∈ (0,+∞].

(A2) The kernel pt(x , y) of e−tL admits a Gaussian upper bound: ∃C , c > 0 such
that for all x , y ∈ X and t > 0,

|pt(x , y)| ≤ C

µ(B(x ,
√
t))

exp
(
− d(x , y)2

ct

)
.
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Our assumptions

Let φ : R+ → R be a smooth function. We denote by (H1) and (H2) the
following assumptions on φ:

(H1) There exists 0 < m1 ≤ 1 such that

φ′(r) ∼ rm1−1 and |φ′′(r)| & rm1−2, r ≥ 1.

(H2) There exists m2 > 0 such that

φ′(r) ∼ rm2−1 and |φ′′(r)| & rm2−2, 0 < r < 1.

• Some examples: if φ(r) = rν with ν ∈ (0, 1), then (H1) and (H2) are satisfied
with m1 = m2 = ν. If φ(r) =

√
1 + r2, then (H1) and (H2) are satisfied with

m1 = 1 and m2 = 2.

Xuan Thinh Duong (Macquarie University) Dispersive estimates 7 / 32



Tools

The following formula is important for our result.
• Subordination formula:

Theorem ([BDDM])

Assume φ satisfies (H1) and g is a C∞ function supported in [1/2, 2]. Then there
exist c0 > 1, and suitable functions ρt(x , λ) and at(s, λ) so that

g(λ−1
√
x)e itφ(x) = ρt(x , λ) +

√
tλ2m1 η(λ−2x)

∫
e ixtλ

2m1−2sat(s, λ)ds (5)

for all x , t > 0 and λ ≥ 1, where η ∈ C∞(R) is supported in [1/5, 5] and η ≡ 1 on
[1/4, 4].

We have a similar formula for the case 0 < λ < 1.

[BDDM] The Anh Bui, Piero D’Ancona, Xuan Thinh Duong and Detlef Müller, On
the flows associated to self-adjoint operators on metric measure spaces, preprint.
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Proof.

Let k ∈ Z and t > 0. For λ ≥ 1 we denote by Ψλ(ξ) the Fourier transform of
g(λ−1

√
x)e itφ(x), i.e.,

Ψλ(ξ) =

∫
g(λ−1

√
x)e itφ(x)e−ixξdx

= λ2
∫

g(
√
u)e i [tφ(λ

2u)−λ2uξ]du.

(6)

Let τ ∈ C∞(R) supported in [2c−10 , 2c0] with τ ≡ 1 in [c−10 , c0] where c0 will be
determined later. Then by the Fourier inversion formula we have

g(λ−1
√
x)e itφ(x) = η(λ−2x)

∫ (
1− τ

( ξ

tλ2m1−2

))
Ψλ(ξ)e iξxdξ

+ η(λ−2x)

∫
τ
( ξ

tλ2m1−2

)
Ψλ(ξ)e iξxdξ

=: ρt(x , λ) + At(x , λ)

where η ∈ C∞(R) is supported in [1/5, 5] and η ≡ 1 on [1/4, 4].
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Observe that
∂u[tφ(λ2u)− λ2uξ] = λ2tφ′(λ2u)− λ2ξ

We note that the integrand in the expression for ρt(x , λ) is supported where either
ξ < c−10 tλ2m1−2 or ξ > c0tλ

2m1−2. In this situation, by (H1) we can choose c0
large enough so that

|∂u[tφ(λ2u)− λ2uξ]| & (λ2|ξ|+ tλ2m1)

Hence, by integration by parts in (6), we have for these ξ that

|Ψλ(ξ)| ≤ Ck,g ,φλ
2(λ2|ξ|+ tλ2m1)−k , ∀k ≥ 0, λ ≥ 1.

This implies
|ρt(x , λ)| ≤ Ck,g ,φ(tλ2m1)−k , k ≥ 0.
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We now estimate the term At(x , λ). By a change of variables, we have

At(x , λ) = tλ2m1−2η(λ−2x)

∫
τ(s)Ψλ(tλ2m1−2s)e ixtλ

2m1−2sds

= tλ2m1η(λ−2x)

∫
τ(s)e ixtλ

2m1−2s

∫
g(
√
u)e i [tφ(λ

2u)−tλ2m1us]duds

=
√
tλ2m1η(λ−2x)

∫
e ixtλ

2m1−2sat(s, λ)ds

where

at(s, λ) =
√
tλ2m1

∫
τ(s)g(

√
u)e i [tφ(λ

2u)−tλ2m1us]du.

It is clear that supp a(·, λ) ⊂ [2c−10 , 2c0]. Moreover, on the support of g we have
1/4 < u < 4. In this situation, by (H1) we have∣∣∣ ∂2

∂u2
[tφ(λ2u)− tλ2m1us]

∣∣∣ & tλ2m1 .

It then follows that
|at(x , λ)| . 1.

This implies |a(s, λ)| . 1 for all s ∈ [2c−10 , 2c0] and λ ≥ 1. This proves the
required estimate.
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Tools

Due to the lacking of regularity assumption on the behaviour of the kernels of the
semigroup e−tL, the standard Hardy space, Besov spaces ... might not be the
appropriate setting for the dispersive estimates for L. An appropriate replacement
is using function spaces associated to operators.

• Hardy spaces associated to operators:

Definition

Let 0 < p ≤ 1 and M ∈ N. A function a(x) supported in a ball B ⊂ X of radius
rB is called a (p, 2,M, L)-atom if there exists a function b ∈ D(LM) such that

(i) a = LMb;

(ii) suppLkb ⊂ B, k = 0, 1, . . . ,M;

(iii) ‖Lkb‖L2(X ) ≤ r
2(M−k)
B µ(B)1/2−1/p, k = 0, 1, . . . ,M.

[HLMMY] S. Hofmann, G. Lu, D. Mitrea, M. Mitrea and L. Yan, Hardy spaces
associated to non-negative self-adjoint operators satisfying Davies-Gaffney
estimates, Mem. Amer. Math. Soc. 214 (2011)
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Tools: Hardy spaces associated to operators

Definition (Atomic Hardy spaces for L)

Given 0 < p ≤ 1 and M ∈ N, we say that f =
∑
λjaj is an atomic

(p, 2,M, L)-representation if {λj}∞j=0 ∈ `p, each aj is a (p, 2,M, L)-atom, and the

sum converges in L2(X ). The space Hp
L,at,M(X ) is then defined as the completion

of {
f ∈ L2(X ) : f has an atomic (p, 2,M, L)-representation

}
,

with the norm given by

‖f ‖p
H
p
L,at,M

(X )
= inf

{∑
|λj |p : f =

∑
λjaj is an atomic (p, 2,M, L)-representation

}
.
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Example: Let L = −∆ + |x |2 on Rn. Let ρ(x) = min{1, |x |−1} for x ∈ Rn. Let
p ∈ (0, 1]. A function a is called a (p,∞, ρ)-atom associated to the ball B(x0, r) if

(i) supp a ⊂ B(x0, r);

(ii) ‖a‖L∞ ≤ |B(x0, r)|−1/p;

(iii)

∫
xαa(x)dx = 0 for all |α| ≤ bn(1/p − 1)c if r < ρ(x0)/4.

The Hardy space Hp
at,ρ(Rn) is then defined as the set of all functions f which can

be expressed in the form f =
∑

j λjaj where (λj)j ∈ `p and aj are (p,∞, ρ)-atoms.
Its norm is given by

‖f ‖p
Hp

at,ρ(Rn)
= inf

{∑
j

|λj |p : f =
∑
j

λjaj
}

where the infimum is taken over all possible atomic decompositions of f . Then we
have Hp(Rn) $ Hp

at,ρ(Rn) ≡ Hp
L (Rn) for all p ∈ (0, 1].
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Tools

• Besov spaces associated to operators
Fix a Littlewood–Paley dyadic partition of unity Ψ = {ψj}j∈Z on R, i.e., ψ ∈ S(R)
such that suppψ ⊂ [1/2, 2] and∑

j∈Z
ψ(2−jλ) = 1 on (0,∞).

and define for all s ∈ R, 1 ≤ p, q <∞ the Besov space Bs,L
p,q(X ) as the completion

of the set {
f ∈ L2(X ) : ‖f ‖Bs,L

p,q
<∞

}
for the norm ‖ · ‖Bs,L

p,q
given by

‖f ‖Bs,L
p,q

:=
{∑

j∈Z

(
2js‖ψj(

√
L)f ‖Lp

)q }1/q

.

We note that this definition is independent of the choice of Ψ.
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Main results

The following are our main results.

Theorem ([BDDM] (High frequency estimate))

Assume L satisfies (A1) and (A2), φ satisfies (H1), and ψ ∈ C∞(R) is supported
in [1/2, 2]. Then we have

|ψ(λ−1
√
L)e itφ(L)f | . |t|−

n−1
2 λ(1−m1)n+m1‖f ‖L1 , λ ≥ 1, |t| < T0. (7)

Theorem ([BDDM] (Low frequency estimate))

Assume L satisfies (A1) and (A2), φ satisfies (H2), and ψ ∈ C∞(R) is supported
in [1/2, 2]. Then we have

|ψ(λ−1
√
L)e itφ(L)f | . |t|−

n−1
2 λ(1−m2)n+m2‖f ‖L1 , 0 < λ < 1, |t| < T0. (8)
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We give the proof for the case of high frequency dispersive estimate:
From the subordination formula and spectral theory, there exist functions ρ, a and
η as in the subordination formula so that

ψ(λ−1
√
L)e itφ(L) = ρt(L, λ) +

√
tλ2m1η(λ−2L)

∫
e itλ

2m1−2sLat(s, λ)ds

= ρt(L, λ) + At,λ(L).

We first estimate the term related to At,λ(L). By using (A1), (A2) and estimates
on at we have

‖At,λ(L)‖L1→L∞ .
√
λ2m1t[λ2m1−2t]−n/2

∫ 2c0

2c−1
0

s−n/2|at(s, λ)|ds

. t−
n−1
2 λ(1−m1)n+m1 .
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We now take care of the term ρt(L, λ). Let ϕ ∈ C∞(R) with supp ϕ ⊂ [1/6, 6]
and ϕ ≡ 1 in [1/5, 5]. Since ρt(·, λ) is supported in [λ2/5, 5λ2], we have

ρt(L, λ) = ϕ(λ−1
√
L)ρt(L, λ)ϕ(λ−1

√
L).

Therefore,

‖ρt(L, λ)‖L1→L∞ ≤ ‖ϕ(λ−1
√
L)‖L1→L2‖ρt(L, λ)‖L2→L2‖ϕ(λ−1

√
L)‖L2→L∞ .

We now estimate ‖ϕ(λ−1
√
L)‖L1→L2 and ‖ϕ(λ−1

√
L)‖L2→L∞ by using the

Gaussian upper bound and obtain

‖ϕ(λ−1
√
L)‖L1→L2 . λn/2, and ‖ϕ(λ−1

√
L)‖L2→L∞ . λn/2. (9)
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By using the properties of ρt(x , λ) in the subordination formula, we deduce that

‖ρt(L, λ)‖L2→L2 ≤ ‖ρt(·, λ)‖L∞ . (λ2m1t)−
n−1
2 .

Therefore,

‖ρt(L, λ)‖L1→L∞ . λn(λ2m1t)−
n−1
2 = t−

n−1
2 λ(1−m1)n+m1 .

Summing up, we have proved that

‖ψ(λ−1
√
L)e itφ(L)‖L1→L∞ . t−

n−1
2 λ(1−m1)n+m1 , λ ≥ 1. (10)

This completes our proof.
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A case study: dispersive estimates for fractional
Schrödinger semigroups

Theorem ([BDDM])

Let L satisfy (A1) and (A2), and let ν ∈ (0, 1). Assume that ψ ∈ C∞(R) is
supported in [1/2, 2]. Then we have

|ψ(λ−1
√
L)e itL

ν

f | .|t|−
n−1
2 λ(1−ν)n+ν‖f ‖L1 , λ > 0, |t| < T0. (11)

• In the classical case L = −∆, the decay rate in (11) ∼ t−
n−1
2 as ν = 1/2 and

∼ t−
n
2 as ν 6= 1/2.

• The estimate (11) is sharp in the sense that for each ν ∈ (0, 1), ν 6= 1/2 we can
construct an operator L such that e itL has a decay rate ∼ t−

n
2 while e itL

ν

decays

like ∼ t−
n−1
2 at best in general.
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We have the following theorem.

Theorem ([BDDM])

Let L satisfy (A1) and (A2), and let ν ∈ (0, 1).

(i) For s > (1− ν)n + ν,

‖e itL
ν

f ‖L∞ . |t|−
n−1
2 ‖(I + L)s/2f ‖L1 , |t| < T0.

(ii) For p ∈ (0, 1) and s = n(1/p − ν) + ν,

‖e itL
ν

f ‖L∞ . |t|−
n−1
2 ‖Ls/2f ‖Hp

L
, |t| < T0.
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Remarks:

(a) The estimate (ii) is new. To the best of our knowledge, this is the first
Hp

L − L∞ dispersive estimate in the literature.

(b) In the particular case when L = −∆, the estimates (i) and (ii) can be
improved as follows: for all ν ∈ (0, 1)\{1/2},

‖e itL
ν

f ‖L∞ . |t|− n
2 ‖(I + L)s/2f ‖L1 , s > n(1− ν), (12)

and
‖e itL

ν

f ‖L∞ . |t|− n
2 ‖Ls/2f ‖Hp , p ∈ (0, 1], s = n(1/p − ν), (13)

where Hp is a classical Hardy space. To the best of our knowledge, the
estimates (12) and (13) are new.
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We have the following result for the case ν = 1/2.

Theorem ([BDDM] )

Let L satisfy (A1) and (A2).

(i) For s > n−1
2 , we have∥∥∥∥∥e it

√
L

√
L

f

∥∥∥∥∥
L∞

. |t|−
n−1
2 ‖(I + L)s/2f ‖L1 , |t| < T0.

(ii) For p ∈ (0, 1] and s = n( 1
p −

1
2 )− 1

2 , we have∥∥∥∥∥e it
√
L

√
L

f

∥∥∥∥∥
L∞

. |t|−
n−1
2 ‖Ls/2f ‖Hp

L
, |t| < T0.
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Note that the decay |t|− n−1
2 is sharp. Compare with the following estimate from

[Beals, 1994] (see also [B. Marshall, W. Strauss, and S. Wainger, 1980]) for
L = −∆ + V with small potentials V ∈ S(Rn), n ≥ 3:∥∥∥∥∥e it

√
L

√
L

f

∥∥∥∥∥
L∞

. |t|−
n−1
2 ‖(I −∆)s/2f ‖H1 , s =

n − 1

2
. (14)

We see that estimate (ii) is new for 0 < p ≤ 1 even when L = −∆.
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The following estimate concerns the Besov norm associated to operator L.

Theorem ([BDDM])

Let L satisfy (A1) and (A2), and let ν ∈ (0, 1). Then we have∥∥∥e itLν f ∥∥∥
L∞

. |t|−
n−1
2 ‖f ‖

Ḃ
(1−ν)n+ν,L
1,1

. (15)

In the particular case ν = 1
2 we get∥∥∥∥∥e it
√
L

√
L

f

∥∥∥∥∥
L∞

. |t|−
n−1
2 ‖f ‖

Ḃ
n−1
2
,L

1,1

. (16)
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Applications

1. Hermite operators. Let L = −∆ + |x |2 be the Hermite operator on Rn with
n ≥ 1. It is well-known that for any δ > 0 there exists C > 0 so that

‖e itL‖L1→L∞ ≤
C

tn/2
, |t| < π/2− δ.

Theorem ([BDDM])

Let L = −∆ + |x |2 be the Hermite operator on Rn with n ≥ 1. Then we have

‖e itL
ν

f ‖L∞ . |t|−
n−1
2 ‖Ls/2f ‖Hp

L
, |t| < π/2− δ

for p ∈ (0, 1) and s = n(1/p − ν) + ν; and∥∥∥∥∥e it
√
L

√
L

f

∥∥∥∥∥
L∞

. |t|−
n−1
2 ‖Ls/2f ‖Hp

L
, |t| < π/2− δ

for p ∈ (0, 1) and s = n( 1
p −

1
2 )− 1

2 .
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We can show that Hp(Rn) $ Hp
L (Rn). See [J. Dziubański, 1998]. Hence the

estimate above is sharper than the following estimates:

‖e itL
ν

f ‖L∞ . |t|−
n−1
2 ‖Ls/2f ‖Hp , |t| < π/2− δ

for p ∈ (0, 1) and s = n(1/p − ν) + ν; and∥∥∥∥∥e it
√
L

√
L

f

∥∥∥∥∥
L∞

. |t|−
n−1
2 ‖Ls/2f ‖Hp , |t| < π/2− δ

for p ∈ (0, 1) and s = n( 1
p −

1
2 ) + 1

2 .
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We can prove that Ḃ0
1,1(R) ⊂ Ḃ0,L

1,1 (R) and Ḃs
1,1(Rn) ≡ Ḃs,L

1,1 (Rn) for 0 < s < 2 and
n ≥ 1. Hence, from the estimate∥∥∥∥∥e it

√
L

√
L

f

∥∥∥∥∥
L∞

. t−
n−1
2 ‖f ‖

Ḃ
n−1
2
,L

1,1

(17)

we obtain: ∥∥∥∥∥e it
√
L

√
L

f

∥∥∥∥∥
L∞

. t−
n−1
2 ‖f ‖

Ḃ
n−1
2

1,1

, n = 1, 2, 3, 4.
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2. Laguerre operators: Consider the space X = (0,∞)n equipped with the
Euclidean distance d and measure µ given by dµ(x) = dµ1(x) . . . dµn(x) where
dµk = x2αk+1

k dxk , αk > −1 for k = 1, . . . , n.
It is easy to see that

µ(B(x , r)) ∼
n∏

k=1

(r + xk)2αk+1r (18)

where B(x , r) = {y ∈ X : |x − y | < r} is the ball centered in x = (x1, x2, . . . , xn)
with radius r . It follows that the measure µ satisfies the doubling condition (1).
Moreover, if αk > −1/2 for all k , then we have

µ(B(x , r)) & rN , N = 2n +
n∑

k=1

2αk ≥ 1

for all x ∈ X and r > 0.
We now consider the Laguerre operator L defined by

L = −∆−
n∑

k=1

2αk + 1

xk

d

dxk
+ |x |2. (19)

It is well known that the Laguerre operator satisfies (A1) and (A2).
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We have the following result concerning Laguerre operator.

Theorem ([BDDM])

Let αk > −1/2 for all k = 1, . . . , n and let L be the Laguerre operator defined by
(19). Then we have

‖e itL
ν

f ‖L∞ . |t|−
N−1
2 ‖Ls/2f ‖Hp

L
, |t| < π/2− δ

for p ∈ (0, 1] and s = N(1/p − ν) + ν; and∥∥∥∥∥e it
√
L

√
L

f

∥∥∥∥∥
L∞

. |t|−
N−1
2 ‖Ls/2f ‖Hp

L
, |t| < π/2− δ

for p ∈ (0, 1) and s = N( 1
p −

1
2 )− 1

2 .
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Since Hp
CW (X ) $ Hp

L (X ) for N
N+1 < p ≤ 1 (see [Bui-Duong-Ly, 2016]). Hence the

estimates above imply:

‖e itL
ν

f ‖L∞ . |t|−
N−1
2 ‖Ls/2f ‖Hp

CW
, |t| < π/2− δ

for p ∈ ( N
N+1 , 1) and s = N(1/p − ν) + ν; and∥∥∥∥∥e it

√
L

√
L

f

∥∥∥∥∥
L∞

. |t|−
N−1
2 ‖Ls/2f ‖Hp

CW
, |t| < π/2− δ

for p ∈ ( N
N+1 , 1) and s = N( 1

p −
1
2 ) + 1

2 .
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THANK YOU!
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