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H−1− Gradient Flow of energies of the type

P(E) + Volume term (nonlocal)

The simplest example

Vt = κ∆Γt Ht (κ > 0, surface diffusion)

Vt = normal velocity of the boundary Γt of the evolving set Et

Ht = sum of the principal curvatures of Γt

∆Γt = Laplace-Beltrami operator on Γt

Mullins (1957,1958,1960), Davì-Gurtin (1990)

Evolution of a two phase interface controlled by mass diffusion within
the surface
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The H−1 flow of the perimeter

Cahn-Taylor (1994)

Fo

Fh

x

x+h(x)νo(x)

Γh := ∂Fh = {x + h(x)νo(x) : x ∈ Γo}

Fix T > 0 and an integer N and set

τN = T/N. Given the

configuration Fi,N := Fhi,N

to determine Fi+1,N we consider

the following minimum problem

min
{

P(Fh) +
1

2τN

‖h − hi,N‖2
H−1(Γo) : ‖h‖C1(Γo) ≤ M

}
How is the H−1 norm defined?
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‖h − hi,N‖2
H−1 :=

∫
Γi,N

|∇Γi,N vh|2 dHn−1

where


∆Γi,N vh = ((h − hi,N ) ◦ πo)〈νo, νΓi,N

〉 on Γi,N∫
Γi,N

vh dHn−1 = 0

(EL)

∫
Γi+1,N

Hi+1,N ϕ ◦ πo −
∫

Γi,N

vhi+1,N

τN

ϕ ◦ πo = 0 ∀ϕ ∈ C1(Γo)

If the above discrete scheme ‘converges’ to a function h(x , t)∫
Γt

Ht ϕ ◦ πo −
∫

Γt

w(·, t)ϕ ◦ πo = 0 ∀ϕ ∈ C1(Γo)

where ∆Γt w(·, t) =
∂h
∂t
〈νo, νΓt

〉

=⇒ w = Ht =⇒ Vt =
∂h
∂t
〈νo, νΓt

〉 = ∆Γt Ht

The same argument with L2-norm =⇒ Vt = −Ht (mean curvature flow)
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Vt = ∆Γt Ht

Vt = −Ht

• Surface diffusion is volume preserving

d
dt
|Ft | =

∫
∂Ft

Vt dHn−1 =

∫
∂Ft

∆Γt Ht dHn−1 = 0

• Surface diffusion (and mean curvature flow) reduce the perimeter

d
dt
Hn−1(∂Ft ) =

∫
∂Ft

Ht Vt dHn−1 =

∫
∂Ft

Ht ∆Γt Ht dHn−1

= −
∫
∂Ft

|∇Γt Ht |2 dHn−1 ≤ 0

• Surface diffusion does not preserve convexity
Mean curvature flow preserves convexity and shrinks a convex set
to a point in finite time, so that by rescaling the evolving sets to the
original volume, they converge to a ball (Huisken, 1984)
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Singularities may appear in finite time even in 2-D (Giga-Ito, 1998)

• Existence for small times (Escher-Mayer-Simonett, 1998)

Fo ∈ C2,α =⇒ h ∈ C0([0,T ); C2,α(Γo)) ∩ C∞((0,T ); C∞(Γo))

• n = 2 If the flow exists for all times =⇒ Ft converges to a circle
(Elliott-Garcke, 1997)

• n ≥ 2

Fo is C2,α close to Bo =⇒ Ft → σ + Bo in Ck as t →∞ for all k
(Escher-Mayer-Simonett, 1998)

• n = 3

Fo close to an infinite cylinder (LeCrone, Simonett, 2016)
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Evolution of periodic structures (pattern formation)

n = 3 Periodic sets with constant mean curvature boundary

For F ⊂ Tn we set
J(F ) := PTn (F )

F is a critical point for the perimeter with respect to variations with
the same volume if

H∂F = const .

Given a C2 vector field X : Tn 7→ Tn let us now define

∂2J(F )[X ]
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Consider the flow Φ : Tn × (−1,1) 7→ Tn

∂Φ

∂t
= X (Φ), Φ(x ,0) = x

and set Ft := Φ(·, t)(F )

We also require
∫
∂F

X · ν = 0 =⇒ d
dt
|Ft |∣∣

t=0

= 0

Then we set ∂2J(F )[X ] :=
d2

dt2 J(Ft )∣∣
t=0

∂2J(F )[X ] =

∫
∂F

(
|∇(X · ν)|2 − |B∂F |2(X · ν)2

)
dHn−1

Thus for a C2 critical point F and for ϕ ∈ H1(∂F ) we set

∂2J(F )[ϕ] =

∫
∂F

(
|∇ϕ|2 − |B∂F |2ϕ2

)
dHn−1
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H̃1(∂F ) :=

{
ϕ ∈ H1(∂F ) :

∫
∂F
ϕ = 0︸ ︷︷ ︸

volume pres.

,

∫
∂F
ϕνF = 0︸ ︷︷ ︸

translation inv.

}

Then we say that a C2 critical point F is strictly stable if

∂2J(F )[ϕ] > 0 for all ϕ ∈ H̃1(∂F ) \ {0}

Theorem (Acerbi-F.-Morini 2013)
Let F be a strictly stable C2 critical configuration.

Then, F is a strict local minimizer, i.e., there exists δ,C0 > 0, s.t. if
minτ |F∆(τ + G)| < δ

J(G) ≥ J(F ) + C0|F∆(τ + G)|2

The local minimality w.r.t. L∞ perturbations (B.White, 1994)
or w.r.t. L1 perturbations (n ≤ 7, Morgan-Ros, 2010)
In both cases there was no quantitative estimate
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∂2J(F )[ϕ] > 0 for all ϕ ∈ H̃1(∂F ) \ {0}

Theorem (Acerbi-F.-Morini 2013)
Let F be a strictly stable C2 critical configuration.

Then, F is a strict local minimizer, i.e., there exists δ,C0 > 0, s.t. if
minτ |F∆(τ + G)| < δ

J(G) ≥ J(F ) + C0|F∆(τ + G)|2

The local minimality w.r.t. L∞ perturbations (B.White, 1994)
or w.r.t. L1 perturbations (n ≤ 7, Morgan-Ros, 2010)
In both cases there was no quantitative estimate
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Theorem (Acerbi, F., Julin, Morini, JDG to appear)

Let G ⊂ T3 be a smooth strictly stable critical set. For every M > 0
there exists δ > 0 s.t.:

If ∂Fo =
{

x + ho(x)νG : x ∈ ∂G, ‖ho‖H3(∂G)
≤ M

}
,

|Fo| = |G| , |Fo∆G| ≤ δ , and
∫
∂Fo

|∇H
∂Fo
|2 dH2 ≤ δ ,

then the unique classical solution (Ft )t to the surface diffusion flow
with initial datum Fo exists for all t > 0.

Moreover, Ft → G + σ in W 3,2 as t → +∞, for some σ ∈ R3.

The convergence is exponentially fast, i.e., there exist η, cG > 0 such
that for all t > 0, writing

∂Ft = {x + ψσ,t (x)νG+σ
(x) : x ∈ ∂G + σ} ,

we have
‖ψσ,t‖H3(∂G+σ)

≤ ηe−cG t .

Both |σ| and η vanish as δ → 0+.
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Idea of the proof

d
dt

(
1
2

∫
∂Ft

|∇τHt |2 dx
)

=− ∂2J(Ft ) [∆τHt ]−
∫
∂Ft

Bt [∇τHt ] ∆τHt dH2

+
1
2

∫
∂Ft

Ht |∇τHt |2∆τHt dH2 ,

But if Ft is sufficiently close to the stable critical point G then

∂2J(Ft ) [∆τHt ] ≥ c0‖∆τHt‖2
H1(Ft )

⇓
d
dt

(
1
2

∫
∂Ft

|∇τHt |2 dH2
)
≤ −c0

2
‖∆τHt‖2

H1(∂Ft )
≤ −c1‖∇τHt‖2

L2(∂Ft )
,

⇓∫
∂Ft

|∇τHt |2 dH2 ≤ e−c1t
∫
∂F0

|∇τHE0 |2 dH2 = C0e−c1t
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Evolution of material voids

Material void inside a stressed elastic material
(Siegel-Miksis-Voorhees 2004)

F

Ω

Ω = the container

Ω \ F = the region occupied by the material

F = the void

uF : Ω \ F 7→ R3 = the elastic equilibrium

uF = argmin
{∫

Ω\F
W (E(u)) dx : u = uo on ∂Ω

}

E(u) =
Du + DT u

2
the symmetric gradient of u

J(F ) =

∫
Ω\F

W (E(uF )) +H2(∂F )

Note uo = 0 =⇒ J(F ) = H2(∂F )
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J(F ) =

∫
Ω\F

W (E(uF )) +H2(∂F )

We shall assume that if A ∈M3×3

W (A) =
1
2
CA : A

where C is a tensor such that CA : A > 0 for all A 6= 0 Thus
div CE(uF ) = 0 in Ω \ F
uF = uo on ∂Ω

CE(uF )[νF ] = 0 on ∂F

min
{∫

Ω\F
W (E(uF )) +H2(∂F ) : F ⊂ Ω, |F | = m < |Ω|

}
Existence and regularity in 2D (Fonseca-F-Leoni-Millot, 2011)
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Morphology evolution: surface diffusion

J(F ) =

∫
Ω\F

W (E(uF )) dx +H2(∂F )

Γt = ∂Ft

Einstein-Nernst law: surface flux of atoms ∝ ∇Γtµ

µ= chemical potential ; Vt = κ∆Γtµ

µ= first variation of energy = Ht −W (E(ut )) + λ

Vt = κ∆Γt

(
Ht −W (E(ut ))

)
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Vt = ∆Γt

(
Ht −W (E(ut ))

)

• This is the H−1 flow of J(F )

• The flow is volume preserving (no information on the perimeter)

• No existence results available!
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Theorem (F.-Julin-Morini, 2018)

Let G ⊂⊂ Ω ⊂⊂ R3 smooth. For every M > 0 there exist δ > 0, T > 0
s.t. if

∂Fo =
{

x + ho(x)νG : x ∈ ∂G, ‖ho‖H3(∂G)
≤ M

}
, ‖ho‖L2(∂G) ≤ δ,

then there exists a unique solution (Ft )t , t ∈ (0,T ). More precisely

∂Ft = {x + h(x , t)νG (x) : x ∈ ∂G}

where
h ∈ L∞((0,T ); H3(∂G)) ∩ H1((0,T ); H1(∂G))

Moreover, for all integers k ≥ 0,

sup
0≤t≤T

tk‖h(·, t)‖2
H2k+3(∂G) +

∫ T

0
tk‖h(·, t)‖2

H2k+5(∂G) dt ≤ C(k ,M).
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F

Ω

G

∂F = {x + hF (x)νG (x) : x ∈ ∂G}
div CE(uF ) = 0 in Ω \ F
uF = uo on ∂Ω

CE(uF )[νF ] = 0 on ∂F

Set λh (x) = x + h(x)νG (x)

Theorem
Let K > 0, α ∈ (0,1), and let k ≥ 3 be an integer. There exists
Ck = Ck (K ) > 0 such that if h ∈ Hk (∂G), ‖h‖C1,α ≤ K then

‖W (E(uFh )) ◦ λh‖Hk− 3
2 (∂G)

≤ Ck (‖h‖Hk (∂G) + 1)

Moreover there exists C = C(K ) > 0 such that, if h1, h2 ∈ H3(∂G)
with ‖hi‖H3(∂G) ≤ K , for i = 1,2, then

‖uFh2
◦ λh2

− uFh1
◦ λh1

‖H3/2(∂G) ≤ C‖h2 − h1‖H2(∂G)
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Strictly stable critical points

J(F ) =

∫
Ω\F

W (E(uF )) dx +H2(∂F )

F is a critical point if

H∂F −W (E(uF )) = const . on ∂F

Fix X ∈ C2
c (Ω;R3) , with div X = 0 in a nhood of ∂F

Consider the flow Φ : Ω× (−ε, ε) 7→ Ω

∂Φ

∂t
= X (Φ), Φ(x ,0) = x

and set Ft := Φ(·, t)(F ) As before we set

∂2J(F )[X ] :=
d2

dt2 J(Ft )∣∣
t=0
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Strictly stable critical points

∂2J(F )[X ] =

∫
∂F
|∇(X · ν)|2 − |BF |2(X · ν)2dH2 − 2

∫
Ω\F

W (E(wX ))dx

−
∫
∂F
∂ν(W (E(uF )))(X · ν)2dH2 −

∫
∂F

(H
∂F−W (E(uF ))) div

∂F ((X · ν)Xτ )dH2

where wX satisfies∫
Ω\F

CE(wX ) : E(η) dx = −
∫
∂F

div
∂F ((X · ν)E(uF )) · η dH2

for all η ∈ H1(Ω \ F ;R3) such that η = 0 on ∂Ω

F is strictly stable if for all X 6= 0 with div X = 0 in a nhood of ∂F

∂2J(F )[X ] > 0
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F is strictly stable if for all X 6= 0 with div X = 0 in a nhood of ∂F

∂2J(F )[X ] > 0
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Long time existence

Theorem (F-Julin-Morini, 2018)

Let G ⊂⊂ Ω be a smooth strictly stable critical point.

There exists δ > 0 such that if Fo ⊂ Ω satisfies

∂Fo = {x + ho(x)νG : x ∈ ∂G, ‖ho‖H3(∂G)
≤ δ},

then the unique solution (Ft )t>0 of the flow with initial datum Fo is
defined for all times t > 0.

Moreover Ft → G H3-exponentially fast.

But we can say more. . . . . .
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Denote by Γ1, . . . , Γm the connected components of ∂G

and by O1, . . .Om the open sets enclosed by the Γi

G is stationary if

H∂G −W (E(uG )) = λi on Γi , i = 1, . . . ,m

. . . . . . . . .

∂G has m connected components and Fo is close to G in H3

=⇒ ∂Fo, ∂Ft have m connected components

Moreover

|Oi,t | = |Oi,o| ∀i = 1, . . . ,m and ∀t > 0

then Ft → F∞ in H3

where F∞ is the only stationary point H3-close to G s.t.

|Oi,∞| = |Oi,o| ∀i = 1, . . . ,m
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THANK YOU FOR YOUR ATTENTION!
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