Asymptotic stability for the gradient flow of nonlocal energies

Nicola Fusco

The 7th Trilateral Meeting (Australia-Italy-Taiwan) on Nonlinear PDEs and Application

Tainan, January 23-28, $1^{4}+2^{4}+3^{4}+4^{4}+5^{4}+6^{4}$
H^{-1} - Gradient Flow of energies of the type
$P(E)+$ Volume term (nonlocal)
H^{-1} - Gradient Flow of energies of the type

$$
P(E)+\text { Volume term (nonlocal) }
$$

The simplest example

$$
V_{t}=\kappa \Delta_{\Gamma_{t}} H_{t} \quad(\kappa>0, \text { surface diffusion })
$$

H^{-1} - Gradient Flow of energies of the type

$$
P(E)+\text { Volume term (nonlocal) }
$$

The simplest example

$$
V_{t}=\kappa \Delta_{\Gamma_{t}} H_{t} \quad(\kappa>0, \text { surface diffusion })
$$

$V_{t}=$ normal velocity of the boundary Γ_{t} of the evolving set E_{t} $H_{t}=$ sum of the principal curvatures of Γ_{t}
$\Delta_{r_{t}}=$ Laplace-Beltrami operator on Γ_{t}
H^{-1} - Gradient Flow of energies of the type

$$
P(E)+\text { Volume term (nonlocal) }
$$

The simplest example

$$
V_{t}=\kappa \Delta_{\Gamma_{t}} H_{t} \quad(\kappa>0, \text { surface diffusion })
$$

$V_{t}=$ normal velocity of the boundary Γ_{t} of the evolving set E_{t}
$H_{t}=$ sum of the principal curvatures of Γ_{t}
$\Delta_{\Gamma_{t}}=$ Laplace-Beltrami operator on Γ_{t}

Mullins (1957,1958,1960), Davì-Gurtin (1990)
Evolution of a two phase interface controlled by mass diffusion within the surface

The H^{-1} flow of the perimeter
Cahn-Taylor (1994)

The H^{-1} flow of the perimeter

Cahn-Taylor (1994)

$$
\Gamma_{h}:=\partial F_{h}=\left\{x+h(x) \nu_{0}(x): x \in \Gamma_{0}\right\}
$$

Fix $T>0$ and an integer N and set
$\tau_{N}=T / N$. Given the
configuration $F_{i, N}:=F_{h_{i, N}}$
to determine $F_{i+1, N}$ we consider
the following minimum problem

The H^{-1} flow of the perimeter

Cahn-Taylor (1994)

$$
\Gamma_{h}:=\partial F_{h}=\left\{x+h(x) \nu_{0}(x): x \in \Gamma_{0}\right\}
$$

Fix $T>0$ and an integer N and set
$\tau_{N}=T / N$. Given the
configuration $F_{i, N}:=F_{h_{i, N}}$
to determine $F_{i+1, N}$ we consider
the following minimum problem

$$
\min \left\{P\left(F_{h}\right)+\frac{1}{2 \tau_{N}}\left\|h-h_{i, N}\right\|_{H^{-1}\left(\Gamma_{0}\right)}^{2}:\|h\|_{C^{1}\left(\Gamma_{0}\right)} \leq M\right\}
$$

How is the H^{-1} norm defined?

$$
\left\|h-h_{i, N}\right\|_{H^{-1}}^{2}:=\int_{\Gamma_{i, N}}\left|\nabla_{\Gamma_{i, N}} v_{h}\right|^{2} d \mathcal{H}^{n-1}
$$

$$
\text { where }\left\{\begin{array}{l|l}
\Delta_{\Gamma_{i, N}} v_{h}=\left(\left(h-h_{i, N}\right) \circ \pi_{o}\right)\left\langle\nu_{o}, \nu_{\Gamma_{i, N}}\right\rangle & \text { on } \Gamma_{i, N} \\
\int_{\Gamma_{i, N}} v_{h} d \mathcal{H}^{n-1}=0 &
\end{array}\right.
$$

$$
\begin{aligned}
& \min \left\{P\left(F_{h}\right)+\frac{1}{2 \tau_{N}} \int_{\Gamma_{i, N}}\left|\nabla_{\Gamma_{i, N}} v_{h}\right|^{2} d \mathcal{H}^{n-1}:\|h\|_{C^{1}} \leq M\right\} \\
& \text { where } \quad\left\{\begin{array}{l}
\Delta_{\Gamma_{i, N}} v_{h}=\left(\left(h-h_{i, N}\right)\right) \circ \pi_{o}\left\langle\nu_{o}, \nu_{\Gamma_{i, N}}\right\rangle \quad \text { on } \Gamma_{i, N} \\
\int_{\Gamma_{i, N}} v_{h} d \mathcal{H}^{n-1}=0
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
\min & \left\{P\left(F_{h}\right)+\frac{1}{2 \tau_{N}} \int_{\Gamma_{i, N}}\left|\nabla_{\Gamma_{i, N}} v_{h}\right|^{2} d \mathcal{H}^{n-1}:\|h\|_{C^{1}} \leq M\right\} \\
\text { where } & \left\{\begin{array}{l}
\Delta_{\Gamma_{i, N}} v_{h}=\left(\left(h-h_{i, N}\right)\right) \circ \pi_{o}\left\langle\nu_{o}, \nu_{\Gamma_{i, N}}\right\rangle \quad \text { on } \Gamma_{i, N} \\
\int_{\Gamma_{i, N}} v_{h} d \mathcal{H}^{n-1}=0
\end{array}\right.
\end{aligned}
$$

(EL) $\int_{\Gamma_{i+1, N}} H_{i+1, N} \varphi \circ \pi_{0}-\int_{\Gamma_{i, N}} \frac{v_{h_{i+1, N}}}{\tau_{N}} \varphi \circ \pi_{0}=0 \quad \forall \varphi \in C^{1}\left(\Gamma_{0}\right)$

$$
\begin{aligned}
\min & \left\{P\left(F_{h}\right)+\frac{1}{2 \tau_{N}} \int_{\Gamma_{i, N}}\left|\nabla_{\Gamma_{i, N}} v_{h}\right|^{2} d \mathcal{H}^{n-1}:\|h\|_{C^{1}} \leq M\right\} \\
\text { where } & \left\{\begin{array}{l}
\Delta_{\Gamma_{i, N}} v_{h}=\left(\left(h-h_{i, N}\right)\right) \circ \pi_{o}\left\langle\nu_{o}, \nu_{\Gamma_{i, N}}\right\rangle \quad \text { on } \Gamma_{i, N} \\
\int_{\Gamma_{i, N}} v_{h} d \mathcal{H}^{n-1}=0
\end{array}\right.
\end{aligned}
$$

(EL) $\quad \int_{\Gamma_{i+1, N}} H_{i+1, N} \varphi \circ \pi_{0}-\int_{\Gamma_{i, N}} \frac{v_{h_{i+1, N}}}{\tau_{N}} \varphi \circ \pi_{0}=0 \quad \forall \varphi \in C^{1}\left(\Gamma_{0}\right)$
If the above discrete scheme 'converges' to a function $h(x, t)$

$$
\begin{gathered}
\int_{\Gamma_{t}} H_{t} \varphi \circ \pi_{o}-\int_{\Gamma_{t}} w(\cdot, t) \varphi \circ \pi_{0}=0 \quad \forall \varphi \in C^{1}\left(\Gamma_{o}\right) \\
\text { where } \quad \Delta_{\Gamma_{t}} w(\cdot, t)=\frac{\partial h}{\partial t}\left\langle\nu_{o}, \nu_{\Gamma_{t}}\right\rangle
\end{gathered}
$$

$$
\begin{aligned}
\min & \left\{P\left(F_{h}\right)+\frac{1}{2 \tau_{N}} \int_{\Gamma_{i, N}}\left|\nabla_{\Gamma_{i, N}} v_{h}\right|^{2} d \mathcal{H}^{n-1}:\|h\|_{C^{1}} \leq M\right\} \\
\text { where } & \left\{\begin{array}{l}
\Delta_{\Gamma_{i, N}} v_{h}=\left(\left(h-h_{i, N}\right)\right) \circ \pi_{o}\left\langle\nu_{o}, \nu_{\Gamma_{i, N}}\right\rangle \quad \text { on } \Gamma_{i, N} \\
\int_{\Gamma_{i, N}} v_{h} d \mathcal{H}^{n-1}=0
\end{array}\right.
\end{aligned}
$$

(EL) $\quad \int_{\Gamma_{i+1, N}} H_{i+1, N} \varphi \circ \pi_{0}-\int_{\Gamma_{i, N}} \frac{v_{h_{i+1, N}}}{\tau_{N}} \varphi \circ \pi_{0}=0 \quad \forall \varphi \in C^{1}\left(\Gamma_{0}\right)$
If the above discrete scheme 'converges' to a function $h(x, t)$

$$
\begin{gathered}
\int_{\Gamma_{t}} H_{t} \varphi \circ \pi_{0}-\int_{\Gamma_{t}} w(\cdot, t) \varphi \circ \pi_{0}=0 \quad \forall \varphi \in C^{1}\left(\Gamma_{o}\right) \\
\text { where } \quad \Delta_{\Gamma_{t}} w(\cdot, t)=\frac{\partial h}{\partial t}\left\langle\nu_{o}, \nu_{\Gamma_{t}}\right\rangle \\
\Longrightarrow w=H_{t} \quad \Longrightarrow \quad V_{t}=\frac{\partial h}{\partial t}\left\langle\nu_{o}, \nu_{\Gamma_{t}}\right\rangle=\Delta_{\Gamma_{t}} H_{t}
\end{gathered}
$$

$$
\begin{aligned}
& \min \left\{P\left(F_{h}\right)+\frac{1}{2 \tau_{N}} \int_{\Gamma_{i, N}}\left|\nabla_{\Gamma_{i, N}} v_{h}\right|^{2} d \mathcal{H}^{n-1}:\|h\|_{C^{1}} \leq M\right\} \\
& \text { where } \quad\left\{\begin{array}{l}
\Delta_{\Gamma_{i, N}} v_{h}=\left(\left(h-h_{i, N}\right)\right) \circ \pi_{o}\left\langle\nu_{o}, \nu_{\Gamma_{i, N}}\right\rangle \quad \text { on } \Gamma_{i, N} \\
\int_{\Gamma_{i, N}} v_{h} d \mathcal{H}^{n-1}=0
\end{array}\right. \\
& (E L) \quad \int_{\Gamma_{i+1, N}} H_{i+1, N} \varphi \circ \pi_{0}-\int_{\Gamma_{i, N}} \frac{v_{h_{i+1, N}}}{\tau_{N}} \varphi \circ \pi_{0}=0 \quad \forall \varphi \in C^{1}\left(\Gamma_{0}\right)
\end{aligned}
$$

If the above discrete scheme 'converges' to a function $h(x, t)$

$$
\begin{gathered}
\int_{\Gamma_{t}} H_{t} \varphi \circ \pi_{0}-\int_{\Gamma_{t}} w(\cdot, t) \varphi \circ \pi_{0}=0 \quad \forall \varphi \in C^{1}\left(\Gamma_{o}\right) \\
\text { where } \quad \Delta_{\Gamma_{t}} w(\cdot, t)=\frac{\partial h}{\partial t}\left\langle\nu_{o}, \nu_{\Gamma_{t}}\right\rangle \\
\Longrightarrow \quad w=H_{t} \quad \Longrightarrow \quad V_{t}=\frac{\partial h}{\partial t}\left\langle\nu_{o}, \nu_{\Gamma_{t}}\right\rangle=\Delta_{\Gamma_{t}} H_{t}
\end{gathered}
$$

The same argument with L^{2}-norm $\quad \Longrightarrow \quad V_{t}=-H_{t} \quad$ (mean curvature flow)

$$
\begin{aligned}
& V_{t}=\Delta_{\Gamma_{t}} H_{t} \\
& V_{t}=-H_{t}
\end{aligned}
$$

- Surface diffusion is volume preserving

$$
\frac{d}{d_{t}}\left|F_{t}\right|=\int_{\partial F_{t}} V_{t} d \mathcal{H}^{n-1}=\int_{\partial F_{t}} \Delta_{r_{t}} H_{t} d \mathcal{H}^{n-1}=0
$$

$$
\begin{aligned}
& V_{t}=\Delta_{\Gamma_{t}} H_{t} \\
& V_{t}=-H_{t}
\end{aligned}
$$

- Surface diffusion is volume preserving

$$
\frac{d}{d_{t}}\left|F_{t}\right|=\int_{\partial F_{t}} V_{t} d \mathcal{H}^{n-1}=\int_{\partial F_{t}} \Delta_{r_{t}} H_{t} d \mathcal{H}^{n-1}=0
$$

- Surface diffusion (and mean curvature flow) reduce the perimeter

$$
\begin{aligned}
\frac{d}{d t} \mathcal{H}^{n-1}\left(\partial F_{t}\right) & =\int_{\partial F_{t}} H_{t} V_{t} d \mathcal{H}^{n-1}=\int_{\partial F_{t}} H_{t} \Delta_{\Gamma_{t}} H_{t} d \mathcal{H}^{n-1} \\
& =-\int_{\partial F_{t}}\left|\nabla_{\Gamma_{t}} H_{t}\right|^{2} d \mathcal{H}^{n-1} \leq 0
\end{aligned}
$$

$$
\begin{aligned}
& V_{t}=\Delta_{\Gamma_{t}} H_{t} \\
& V_{t}=-H_{t}
\end{aligned}
$$

- Surface diffusion is volume preserving

$$
\frac{d}{d_{t}}\left|F_{t}\right|=\int_{\partial F_{t}} V_{t} d \mathcal{H}^{n-1}=\int_{\partial F_{t}} \Delta_{r_{t}} H_{t} d \mathcal{H}^{n-1}=0
$$

- Surface diffusion (and mean curvature flow) reduce the perimeter

$$
\begin{aligned}
\frac{d}{d t} \mathcal{H}^{n-1}\left(\partial F_{t}\right) & =\int_{\partial F_{t}} H_{t} V_{t} d \mathcal{H}^{n-1}=\int_{\partial F_{t}} H_{t} \Delta_{\Gamma_{t}} H_{t} d \mathcal{H}^{n-1} \\
& =-\int_{\partial F_{t}}\left|\nabla_{\Gamma_{t}} H_{t}\right|^{2} d \mathcal{H}^{n-1} \leq 0
\end{aligned}
$$

- Surface diffusion does not preserve convexity

Mean curvature flow preserves convexity and shrinks a convex set to a point in finite time, so that by rescaling the evolving sets to the original volume, they converge to a ball (Huisken, 1984)

Singularities may appear in finite time even in 2-D (Giga-Ito, 1998)

Singularities may appear in finite time even in 2-D (Giga-Ito, 1998)

- Existence for small times (Escher-Mayer-Simonett, 1998)

$$
F_{o} \in C^{2, \alpha} \Longrightarrow h \in C^{0}\left([0, T) ; C^{2, \alpha}\left(\Gamma_{0}\right)\right) \cap C^{\infty}\left((0, T) ; C^{\infty}\left(\Gamma_{0}\right)\right)
$$

Singularities may appear in finite time even in 2-D (Giga-Ito, 1998)

- Existence for small times (Escher-Mayer-Simonett, 1998)

$$
F_{o} \in C^{2, \alpha} \Longrightarrow h \in C^{0}\left([0, T) ; C^{2, \alpha}\left(\Gamma_{o}\right)\right) \cap C^{\infty}\left((0, T) ; C^{\infty}\left(\Gamma_{o}\right)\right)
$$

- $n=2$ If the flow exists for all times $\Longrightarrow F_{t}$ converges to a circle (Elliott-Garcke, 1997)

Singularities may appear in finite time even in 2-D (Giga-Ito, 1998)

- Existence for small times (Escher-Mayer-Simonett, 1998)

$$
F_{o} \in C^{2, \alpha} \Longrightarrow h \in C^{0}\left([0, T) ; C^{2, \alpha}\left(\Gamma_{o}\right)\right) \cap C^{\infty}\left((0, T) ; C^{\infty}\left(\Gamma_{o}\right)\right)
$$

- $n=2$ If the flow exists for all times $\Longrightarrow F_{t}$ converges to a circle (Elliott-Garcke, 1997)
- $n \geq 2$
F_{0} is $C^{2, \alpha}$ close to $B_{0} \Longrightarrow F_{t} \rightarrow \sigma+B_{0}$ in C^{k} as $t \rightarrow \infty$ for all k (Escher-Mayer-Simonett, 1998)

Singularities may appear in finite time even in 2-D (Giga-Ito, 1998)

- Existence for small times (Escher-Mayer-Simonett, 1998)

$$
F_{o} \in C^{2, \alpha} \Longrightarrow h \in C^{0}\left([0, T) ; C^{2, \alpha}\left(\Gamma_{o}\right)\right) \cap C^{\infty}\left((0, T) ; C^{\infty}\left(\Gamma_{o}\right)\right)
$$

- $n=2$ If the flow exists for all times $\Longrightarrow F_{t}$ converges to a circle (Elliott-Garcke, 1997)
- $n \geq 2$
F_{0} is $C^{2, \alpha}$ close to $B_{o} \Longrightarrow F_{t} \rightarrow \sigma+B_{o}$ in C^{k} as $t \rightarrow \infty$ for all k (Escher-Mayer-Simonett, 1998)
- $n=3$
F_{o} close to an infinite cylinder (LeCrone, Simonett, 2016)

Evolution of periodic structures (pattern formation)

Evolution of periodic structures (pattern formation)

$n=3 \quad$ Periodic sets with constant mean curvature boundary

Evolution of periodic structures (pattern formation)

$n=3 \quad$ Periodic sets with constant mean curvature boundary

For $F \subset \mathbb{T}^{n}$ we set

$$
J(F):=P_{\mathbb{T}^{n}}(F)
$$

Evolution of periodic structures (pattern formation)

$n=3 \quad$ Periodic sets with constant mean curvature boundary

For $F \subset \mathbb{T}^{n}$ we set

$$
J(F):=P_{\mathbb{T}^{n}}(F)
$$

F is a critical point for the perimeter with respect to variations with the same volume if

$$
H_{\partial F}=\text { const. }
$$

Evolution of periodic structures (pattern formation)

$n=3 \quad$ Periodic sets with constant mean curvature boundary
For $F \subset \mathbb{T}^{n}$ we set

$$
J(F):=P_{\mathbb{T}^{n}}(F)
$$

F is a critical point for the perimeter with respect to variations with the same volume if

$$
H_{\partial F}=\text { const. }
$$

Given a C^{2} vector field $X: \mathbb{T}^{n} \mapsto \mathbb{T}^{n}$ let us now define

$$
\partial^{2} J(F)[X]
$$

Consider the flow $\Phi: \mathbb{T}^{n} \times(-1,1) \mapsto \mathbb{T}^{n}$

$$
\frac{\partial \Phi}{\partial t}=X(\Phi), \quad \Phi(x, 0)=x
$$

and set $F_{t}:=\Phi(\cdot, t)(F)$

Consider the flow $\Phi: \mathbb{T}^{n} \times(-1,1) \mapsto \mathbb{T}^{n}$

$$
\frac{\partial \Phi}{\partial t}=X(\Phi), \quad \Phi(x, 0)=x
$$

and set $F_{t}:=\Phi(\cdot, t)(F)$
We also require $\int_{\partial F} X \cdot \nu=0 \Longrightarrow \frac{d}{d t}\left|F_{t}\right|_{t=0}=0$

Consider the flow $\Phi: \mathbb{T}^{n} \times(-1,1) \mapsto \mathbb{T}^{n}$

$$
\frac{\partial \Phi}{\partial t}=X(\Phi), \quad \Phi(x, 0)=x
$$

and set $F_{t}:=\Phi(\cdot, t)(F)$
We also require $\int_{\partial F} X \cdot \nu=0 \Longrightarrow \frac{d}{d t}\left|F_{t}\right|_{t=0}=0$
Then we set $\quad \partial^{2} J(F)[X]:=\left.\frac{d^{2}}{d t^{2}} J\left(F_{t}\right)\right|_{t=0}$

Consider the flow $\Phi: \mathbb{T}^{n} \times(-1,1) \mapsto \mathbb{T}^{n}$

$$
\frac{\partial \Phi}{\partial t}=X(\Phi), \quad \Phi(x, 0)=x
$$

and set $F_{t}:=\Phi(\cdot, t)(F)$
We also require $\int_{\partial F} X \cdot \nu=0 \Longrightarrow \frac{d}{d t}\left|F_{t}\right|_{t=0}=0$
Then we set $\quad \partial^{2} J(F)[X]:=\frac{d^{2}}{d t^{2}} J\left(F_{t}\right)_{t=0}$
$\partial^{2} J(F)[X]=\int_{\partial F}\left(|\nabla(X \cdot \nu)|^{2}-\left|B_{\partial F}\right|^{2}(X \cdot \nu)^{2}\right) d \mathcal{H}^{n-1}$

Consider the flow $\Phi: \mathbb{T}^{n} \times(-1,1) \mapsto \mathbb{T}^{n}$

$$
\frac{\partial \Phi}{\partial t}=X(\Phi), \quad \Phi(x, 0)=x
$$

and set $F_{t}:=\Phi(\cdot, t)(F)$
We also require $\int_{\partial F} X \cdot \nu=0 \Longrightarrow \frac{d}{d t}\left|F_{t}\right|_{t=0}=0$
Then we set $\quad \partial^{2} J(F)[X]:=\frac{d^{2}}{d t^{2}} J\left(F_{t}\right)_{t=0}$
$\partial^{2} J(F)[X]=\int_{\partial F}\left(|\nabla(X \cdot \nu)|^{2}-\left|B_{\partial F}\right|^{2}(X \cdot \nu)^{2}\right) d \mathcal{H}^{n-1}$
Thus for a C^{2} critical point F and for $\varphi \in H^{1}(\partial F)$ we set

$$
\partial^{2} J(F)[\varphi]=\int_{\partial F}\left(|\nabla \varphi|^{2}-\left|B_{\partial F}\right|^{2} \varphi^{2}\right) d \mathcal{H}^{n-1}
$$

$$
\tilde{H}^{1}(\partial F):=\{\varphi \in H^{1}(\partial F): \underbrace{\int_{\partial=} \varphi=0}_{\text {volume pres. }}, \underbrace{\int_{\partial \nu_{F}} \varphi \nu_{F}=0}_{\text {translation inv. }}\}
$$

$$
\tilde{H}^{1}(\partial F):=\{\varphi \in H^{1}(\partial F): \underbrace{\int_{\partial F} \varphi=0}_{\text {volume pres. }}, \underbrace{\int_{\partial \nu_{F}} \varphi \nu_{F}=0}_{\text {translation inv. }}\}
$$

Then we say that a C^{2} critical point F is strictly stable if

$$
\partial^{2} J(F)[\varphi]>0 \quad \text { for all } \varphi \in \widetilde{H}^{1}(\partial F) \backslash\{0\}
$$

$$
\tilde{H}^{1}(\partial F):=\{\varphi \in H^{1}(\partial F): \underbrace{\int_{\partial F} \varphi=0}_{\text {volume pres. }}, \underbrace{\int_{\partial V^{\prime}} \varphi \nu_{F}=0}_{\text {translation inv. }}\}
$$

Then we say that a C^{2} critical point F is strictly stable if

$$
\partial^{2} J(F)[\varphi]>0 \quad \text { for all } \varphi \in \widetilde{H}^{1}(\partial F) \backslash\{0\}
$$

Theorem (Acerbi-F.-Morini 2013)

Let F be a strictly stable C^{2} critical configuration.
Then, F is a strict local minimizer, i.e., there exists $\delta, C_{0}>0$, s.t. if $\min _{\tau}|F \Delta(\tau+G)|<\delta$

$$
J(G) \geq J(F)+C_{0}|F \Delta(\tau+G)|^{2}
$$

$$
\tilde{H}^{1}(\partial F):=\{\varphi \in H^{1}(\partial F): \underbrace{\int_{\partial F} \varphi=0}_{\text {volume pres. }}, \underbrace{\int_{\partial \nu_{F}} \varphi \nu_{F}=0}_{\text {translation inv. }}\}
$$

Then we say that a C^{2} critical point F is strictly stable if

$$
\partial^{2} J(F)[\varphi]>0 \quad \text { for all } \varphi \in \widetilde{H}^{1}(\partial F) \backslash\{0\}
$$

Theorem (Acerbi-F.-Morini 2013)

Let F be a strictly stable C^{2} critical configuration.
Then, F is a strict local minimizer, i.e., there exists $\delta, C_{0}>0$, s.t. if $\min _{\tau}|F \Delta(\tau+G)|<\delta$

$$
J(G) \geq J(F)+C_{0}|F \Delta(\tau+G)|^{2}
$$

The local minimality w.r.t. L^{∞} perturbations (B.White, 1994) or w.r.t. L^{1} perturbations ($n \leq 7$, Morgan-Ros, 2010) In both cases there was no quantitative estimate

Theorem (Acerbi, F., Julin, Morini, JDG to appear)

Let $G \subset \mathbb{T}^{3}$ be a smooth strictly stable critical set. For every $M>0$ there exists $\delta>0$ s.t.:

If $\partial F_{o}=\left\{x+h_{O}(x) \nu_{G}: x \in \partial G,\left\|h_{O}\right\|_{H^{3}(\partial G)} \leq M\right\}$,

$$
\left|F_{0}\right|=|G|, \quad\left|F_{0} \Delta G\right| \leq \delta, \quad \text { and } \quad \int_{\partial F_{0}}\left|\nabla H_{\partial \sigma_{0}}\right|^{2} d \mathcal{H}^{2} \leq \delta,
$$

then the unique classical solution $\left(F_{t}\right)_{t}$ to the surface diffusion flow with initial datum F_{0} exists for all $t>0$.
Moreover, $F_{t} \rightarrow G+\sigma$ in $W^{3,2}$ as $t \rightarrow+\infty$, for some $\sigma \in \mathbb{R}^{3}$.
The convergence is exponentially fast, i.e., there exist $\eta, c_{G}>0$ such that for all $t>0$, writing

$$
\partial F_{t}=\left\{x+\psi_{\sigma, t}(x) \nu_{G+\sigma}(x): x \in \partial G+\sigma\right\},
$$

we have

$$
\left\|\psi_{\sigma, t}\right\|_{H^{3}(\partial G+\sigma)} \leq \eta e^{-c_{G} t}
$$

Both $|\sigma|$ and η vanish as $\delta \rightarrow 0^{+}$.

Idea of the proof

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{1}{2} \int_{\partial F_{t}}\left|\nabla_{\tau} H_{t}\right|^{2} d x\right)= & -\partial^{2} J\left(F_{t}\right)\left[\Delta_{\tau} H_{t}\right]-\int_{\partial F_{t}} B_{t}\left[\nabla_{\tau} H_{t}\right] \Delta_{\tau} H_{t} d \mathcal{H}^{2} \\
& +\frac{1}{2} \int_{\partial F_{t}} H_{t}\left|\nabla_{\tau} H_{t}\right|^{2} \Delta_{\tau} H_{t} d \mathcal{H}^{2}
\end{aligned}
$$

Idea of the proof

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{1}{2} \int_{\partial F_{t}}\left|\nabla_{\tau} H_{t}\right|^{2} d x\right)= & -\partial^{2} J\left(F_{t}\right)\left[\Delta_{\tau} H_{t}\right]-\int_{\partial F_{t}} B_{t}\left[\nabla_{\tau} H_{t}\right] \Delta_{\tau} H_{t} d \mathcal{H}^{2} \\
& +\frac{1}{2} \int_{\partial F_{t}} H_{t}\left|\nabla_{\tau} H_{t}\right|^{2} \Delta_{\tau} H_{t} d \mathcal{H}^{2}
\end{aligned}
$$

But if F_{t} is sufficiently close to the stable critical point G then

$$
\partial^{2} J\left(F_{t}\right)\left[\Delta_{\tau} H_{t}\right] \geq c_{0}\left\|\Delta_{\tau} H_{t}\right\|_{H^{\prime}\left(F_{t}\right)}^{2}
$$

Idea of the proof

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{1}{2} \int_{\partial F_{t}}\left|\nabla_{\tau} H_{t}\right|^{2} d x\right)= & -\partial^{2} J\left(F_{t}\right)\left[\Delta_{\tau} H_{t}\right]-\int_{\partial F_{t}} B_{t}\left[\nabla_{\tau} H_{t}\right] \Delta_{\tau} H_{t} d \mathcal{H}^{2} \\
& +\frac{1}{2} \int_{\partial F_{t}} H_{t}\left|\nabla_{\tau} H_{t}\right|^{2} \Delta_{\tau} H_{t} d \mathcal{H}^{2}
\end{aligned}
$$

But if F_{t} is sufficiently close to the stable critical point G then

$$
\partial^{2} J\left(F_{t}\right)\left[\Delta_{\tau} H_{t}\right] \geq c_{0}\left\|\Delta_{\tau} H_{t}\right\|_{H^{1}\left(F_{t}\right)}^{2}
$$

$$
\frac{d}{d t}\left(\frac{1}{2} \int_{\partial F_{t}}\left|\nabla_{\tau} H_{t}\right|^{2} d \mathcal{H}^{2}\right) \leq-\frac{c_{0}}{2}\left\|\Delta_{\tau} H_{t}\right\|_{H^{1}\left(\partial F_{t}\right)}^{2} \leq-c_{1}\left\|\nabla_{\tau} H_{t}\right\|_{L^{2}\left(\partial F_{t}\right)}^{2}
$$

Idea of the proof

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{1}{2} \int_{\partial F_{t}}\left|\nabla_{\tau} H_{t}\right|^{2} d x\right)= & -\partial^{2} J\left(F_{t}\right)\left[\Delta_{\tau} H_{t}\right]-\int_{\partial F_{t}} B_{t}\left[\nabla_{\tau} H_{t}\right] \Delta_{\tau} H_{t} d \mathcal{H}^{2} \\
& +\frac{1}{2} \int_{\partial F_{t}} H_{t}\left|\nabla_{\tau} H_{t}\right|^{2} \Delta_{\tau} H_{t} d \mathcal{H}^{2}
\end{aligned}
$$

But if F_{t} is sufficiently close to the stable critical point G then

$$
\partial^{2} J\left(F_{t}\right)\left[\Delta_{\tau} H_{t}\right] \geq c_{0}\left\|\Delta_{\tau} H_{t}\right\|_{H^{\prime}\left(F_{t}\right)}^{2}
$$

$$
\frac{d}{d t}\left(\frac{1}{2} \int_{\partial F_{t}}\left|\nabla_{\tau} H_{t}\right|^{2} d \mathcal{H}^{2}\right) \leq-\frac{c_{0}}{2}\left\|\Delta_{\tau} H_{t}\right\|_{H^{1}\left(\partial F_{t}\right)}^{2} \leq-c_{1}\left\|\nabla_{\tau} H_{t}\right\|_{L^{2}\left(\partial F_{t}\right)}^{2}
$$

$$
\Downarrow
$$

$$
\int_{\partial F_{t}}\left|\nabla_{\tau} H_{t}\right|^{2} d \mathcal{H}^{2} \leq \mathrm{e}^{-c_{1} t} \int_{\partial F_{0}}\left|\nabla_{\tau} H_{E_{0}}\right|^{2} d \mathcal{H}^{2}=C_{0} \mathrm{e}^{-c_{1} t}
$$

Evolution of material voids

Material void inside a stressed elastic material (Siegel-Miksis-Voorhees 2004)

Evolution of material voids

Material void inside a stressed elastic material (Siegel-Miksis-Voorhees 2004)
$\Omega=$ the container
$\Omega \backslash F=$ the region occupied by the material
$F=$ the void
$u_{F}: \Omega \backslash F \mapsto \mathbb{R}^{3}=$ the elastic equilibrium
$u_{F}=\operatorname{argmin}\left\{\int_{\Omega \backslash F} W(E(u)) d x: u=u_{0}\right.$ on $\left.\partial \Omega\right\}$
$E(u)=\frac{D u+D^{T} u}{2}$ the symmetric gradient of u

Evolution of material voids

Material void inside a stressed elastic material (Siegel-Miksis-Voorhees 2004)
$\Omega=$ the container

Evolution of material voids

Material void inside a stressed elastic material (Siegel-Miksis-Voorhees 2004)
$\Omega=$ the container

$$
\begin{aligned}
& \Omega \\
& \begin{array}{l}
\Omega \backslash F=\text { the region occupied by the material } \\
F=\text { the void } \\
u_{F}: \Omega \backslash F \mapsto \mathbb{R}^{3}=\text { the elastic equilibrium } \\
u_{F}=\operatorname{argmin}\left\{\int_{\Omega \backslash F} W(E(u)) d x: u=u_{0} \text { on } \partial \Omega\right\} \\
E(u)=\frac{D u+D^{T} u}{2} \text { the symmetric gradient of } u
\end{array} \\
& \\
& \hline \text { Note } \quad J(F)=\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right)+\mathcal{H}^{2}(\partial F) \\
& u_{0}=0 \Longrightarrow J(F)=\mathcal{H}^{2}(\partial F)
\end{aligned}
$$

$$
J(F)=\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right)+\mathcal{H}^{2}(\partial F)
$$

$$
J(F)=\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right)+\mathcal{H}^{2}(\partial F)
$$

We shall assume that if $A \in \mathcal{M}^{3 \times 3}$

$$
W(A)=\frac{1}{2} \mathbb{C} A: A
$$

where \mathbb{C} is a tensor such that $\mathbb{C} A: A>0$ for all $A \neq 0$

$$
J(F)=\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right)+\mathcal{H}^{2}(\partial F)
$$

We shall assume that if $A \in \mathcal{M}^{3 \times 3}$

$$
W(A)=\frac{1}{2} \mathbb{C} A: A
$$

where \mathbb{C} is a tensor such that $\mathbb{C} A: A>0$ for all $A \neq 0$ Thus

$$
\begin{cases}\operatorname{div} \mathbb{C} E\left(u_{F}\right)=0 & \text { in } \Omega \backslash F \\ u_{F}=u_{0} & \text { on } \partial \Omega \\ C E\left(u_{F}\right)\left[\nu_{F}\right]=0 & \text { on } \partial F\end{cases}
$$

$$
J(F)=\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right)+\mathcal{H}^{2}(\partial F)
$$

We shall assume that if $A \in \mathcal{M}^{3 \times 3}$

$$
W(A)=\frac{1}{2} \mathbb{C} A: A
$$

where \mathbb{C} is a tensor such that $\mathbb{C} A: A>0$ for all $A \neq 0$ Thus

$$
\begin{cases}\operatorname{div} \mathbb{C} E\left(u_{F}\right)=0 & \text { in } \Omega \backslash F \\ u_{F}=u_{0} & \text { on } \partial \Omega \\ C E\left(u_{F}\right)\left[\nu_{F}\right]=0 & \text { on } \partial F\end{cases}
$$

$\min \left\{\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right)+\mathcal{H}^{2}(\partial F): F \subset \Omega,|F|=m<|\Omega|\right\}$

$$
J(F)=\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right)+\mathcal{H}^{2}(\partial F)
$$

We shall assume that if $A \in \mathcal{M}^{3 \times 3}$

$$
W(A)=\frac{1}{2} \mathbb{C} A: A
$$

where \mathbb{C} is a tensor such that $\mathbb{C} A: A>0$ for all $A \neq 0$ Thus

$$
\begin{gathered}
\begin{cases}\operatorname{div} \mathbb{C} E\left(u_{F}\right)=0 & \text { in } \Omega \backslash F \\
u_{F}=u_{0} & \text { on } \partial \Omega \\
C E\left(u_{F}\right)\left[\nu_{F}\right]=0 & \text { on } \partial F\end{cases} \\
\min \left\{\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right)+\mathcal{H}^{2}(\partial F): F \subset \Omega,|F|=m<|\Omega|\right\}
\end{gathered}
$$

Existence and regularity in 2D (Fonseca-F-Leoni-Millot, 2011)

Morphology evolution: surface diffusion

$$
J(F)=\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right) d x+\mathcal{H}^{2}(\partial F)
$$

Einstein-Nernst law: surface flux of atoms $\propto \nabla_{\Gamma_{t}} \mu$
$\mu=$ chemical potential $\leadsto V_{t}=\kappa \Delta_{\Gamma_{t}} \mu$

Morphology evolution: surface diffusion

$$
J(F)=\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right) d x+\mathcal{H}^{2}(\partial F)
$$

Einstein-Nernst law: surface flux of atoms $\propto \nabla_{\Gamma_{t}} \mu$
$\mu=$ chemical potential $\leadsto V_{t}=\kappa \Delta_{\Gamma_{t}} \mu$
$\mu=$ first variation of energy $=H_{t}-W\left(E\left(u_{t}\right)\right)+\lambda$

$$
V_{t}=\kappa \Delta_{\Gamma_{t}}\left(H_{t}-W\left(E\left(u_{t}\right)\right)\right)
$$

$$
V_{t}=\Delta_{\Gamma_{t}}\left(H_{t}-W\left(E\left(u_{t}\right)\right)\right)
$$

$$
V_{t}=\Delta_{\Gamma_{t}}\left(H_{t}-W\left(E\left(u_{t}\right)\right)\right)
$$

- This is the H^{-1} flow of $J(F)$
- The flow is volume preserving (no information on the perimeter)
- No existence results available!

Theorem (F.-Julin-Morini, 2018)
Let $G \subset \subset \Omega \subset \subset \mathbb{R}^{3}$ smooth. For every $M>0$ there exist $\delta>0, T>0$ s.t. if

$$
\partial F_{0}=\left\{x+h_{0}(x) \nu_{G}: x \in \partial G,\left\|h_{0}\right\|_{H^{3}(\partial G)} \leq M\right\}, \quad\left\|h_{0}\right\|_{L^{2}(\partial G)} \leq \delta
$$

then there exists a unique solution $\left(F_{t}\right)_{t}, t \in(0, T)$. More precisely

$$
\partial F_{t}=\left\{x+h(x, t) \nu_{G}(x): x \in \partial G\right\}
$$

where

$$
h \in L^{\infty}\left((0, T) ; H^{3}(\partial G)\right) \cap H^{1}\left((0, T) ; H^{1}(\partial G)\right)
$$

Moreover, for all integers $k \geq 0$,

$$
\sup _{0 \leq t \leq T} t^{k}\|h(\cdot, t)\|_{H^{2 k+3}(\partial G)}^{2}+\int_{0}^{T} t^{k}\|h(\cdot, t)\|_{H^{2 k+5}(\partial G)}^{2} d t \leq C(k, M)
$$

$$
\partial F=\left\{x+h_{F}(x) \nu_{G}(x): x \in \partial G\right\}
$$

$$
\begin{cases}\operatorname{div} \mathbb{C} E\left(u_{F}\right)=0 & \text { in } \Omega \backslash F \\ u_{F}=u_{o} & \text { on } \partial \Omega \\ C E\left(u_{F}\right)\left[\nu_{F}\right]=0 & \text { on } \partial F\end{cases}
$$

$$
\partial F=\left\{x+h_{F}(x) \nu_{G}(x): x \in \partial G\right\}
$$

$\begin{cases}\operatorname{div} \mathbb{C} E\left(u_{F}\right)=0 & \text { in } \Omega \backslash F \\ u_{F}=u_{0} & \text { on } \partial \Omega \\ C E\left(u_{F}\right)\left[\nu_{F}\right]=0 & \text { on } \partial F\end{cases}$

Set $\quad \lambda_{h}(x)=x+h(x) \nu_{G}(x)$

$$
\begin{array}{r}
\partial F=\left\{x+h_{F}(x) \nu_{G}(x): x \in \partial G\right\} \\
\begin{cases}\operatorname{div} \mathbb{C} E\left(u_{F}\right)=0 & \text { in } \Omega \backslash F \\
u_{F}=u_{0} & \text { on } \partial \Omega \\
C E\left(u_{F}\right)\left[\nu_{F}\right]=0 & \text { on } \partial F\end{cases} \\
\text { Set } \quad \lambda_{h}(x)=x+h(x) \nu_{G}(x)
\end{array}
$$

Theorem

Let $K>0, \alpha \in(0,1)$, and let $k \geq 3$ be an integer. There exists $C_{k}=C_{k}(K)>0$ such that if $h \in H^{k}(\partial G),\|h\|_{C^{1, \alpha}} \leq K$ then

$$
\left\|W\left(E\left(u_{F_{h}}\right)\right) \circ \lambda_{h}\right\|_{H^{k-\frac{3}{2}}(\partial G)} \leq C_{k}\left(\|h\|_{H^{k}(\partial G)}+1\right)
$$

Moreover there exists $C=C(K)>0$ such that, if $h_{1}, h_{2} \in H^{3}(\partial G)$ with $\left\|h_{i}\right\|_{H^{3}(\partial G)} \leq K$, for $i=1,2$, then

$$
\left\|u_{F_{h_{2}}} \circ \lambda_{h_{2}}-u_{F_{h_{1}}} \circ \lambda_{h_{1}}\right\|_{H^{3 / 2}(\partial G)} \leq C\left\|h_{2}-h_{1}\right\|_{H^{2}(\partial G)}
$$

Strictly stable critical points

$$
J(F)=\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right) d x+\mathcal{H}^{2}(\partial F)
$$

Strictly stable critical points

$$
J(F)=\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right) d x+\mathcal{H}^{2}(\partial F)
$$

F is a critical point if

$$
H_{\partial F}-W\left(E\left(u_{F}\right)\right)=\text { const. } \quad \text { on } \partial F
$$

Strictly stable critical points

$$
J(F)=\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right) d x+\mathcal{H}^{2}(\partial F)
$$

F is a critical point if

$$
H_{\partial F}-W\left(E\left(u_{F}\right)\right)=\text { const. } \quad \text { on } \partial F
$$

Fix $X \in C_{c}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$, with $\operatorname{div} X=0$ in a nhood of ∂F
Consider the flow $\Phi: \Omega \times(-\varepsilon, \varepsilon) \mapsto \Omega$

$$
\frac{\partial \Phi}{\partial t}=X(\Phi), \quad \Phi(x, 0)=x
$$

and set $F_{t}:=\Phi(\cdot, t)(F)$

Strictly stable critical points

$$
J(F)=\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right) d x+\mathcal{H}^{2}(\partial F)
$$

F is a critical point if

$$
H_{\partial F}-W\left(E\left(u_{F}\right)\right)=\text { const. } \quad \text { on } \partial F
$$

Fix $X \in C_{c}^{2}\left(\Omega ; \mathbb{R}^{3}\right)$, with $\operatorname{div} X=0$ in a nhood of ∂F
Consider the flow $\Phi: \Omega \times(-\varepsilon, \varepsilon) \mapsto \Omega$

$$
\frac{\partial \Phi}{\partial t}=X(\Phi), \quad \Phi(x, 0)=x
$$

and set $F_{t}:=\Phi(\cdot, t)(F) \quad$ As before we set

$$
\partial^{2} J(F)[X]:=\frac{d^{2}}{d t^{2}} J\left(F_{t}\right)_{t=0}
$$

Strictly stable critical points

$$
\begin{aligned}
& \partial^{2} J(F)[X]=\int_{\partial F}|\nabla(X \cdot \nu)|^{2}-\left|B_{F}\right|^{2}(X \cdot \nu)^{2} d \mathcal{H}^{2}-2 \int_{\Omega \backslash F} W\left(E\left(w_{x}\right)\right) d x \\
& \quad-\int_{\partial F} \partial_{\nu}\left(W\left(E\left(u_{F}\right)\right)\right)(X \cdot \nu)^{2} d \mathcal{H}^{2}-\int_{\partial F}\left(H_{\partial F}-W\left(E\left(u_{F}\right)\right)\right) \operatorname{div}_{\partial F}\left((X \cdot \nu) X_{\tau}\right) d \mathcal{H}^{2}
\end{aligned}
$$

Strictly stable critical points

$$
\begin{aligned}
& \partial^{2} J(F)[X]=\int_{\partial F}|\nabla(X \cdot \nu)|^{2}-\left|B_{F}\right|^{2}(X \cdot \nu)^{2} d \mathcal{H}^{2}-2 \int_{\Omega \backslash F} W\left(E\left(w_{x}\right)\right) d x \\
& -\int_{\partial F} \partial_{\nu}\left(W\left(E\left(u_{F}\right)\right)\right)(X \cdot \nu)^{2} d \mathcal{H}^{2}-\int_{\partial F}\left(H_{\partial F}-W\left(E\left(u_{F}\right)\right)\right) \operatorname{div}_{\partial F}\left((X \cdot \nu) X_{\tau}\right) d \mathcal{H}^{2} \\
& \quad \text { where } w_{x} \text { satisfies } \\
& \quad \int_{\Omega \backslash F} \mathbb{C} E\left(w_{X}\right): E(\eta) d x=-\int_{\partial F} \operatorname{div}_{\partial F}\left((X \cdot \nu) E\left(u_{F}\right)\right) \cdot \eta d \mathcal{H}^{2}
\end{aligned}
$$

for all $\eta \in H^{1}\left(\Omega \backslash F ; \mathbb{R}^{3}\right)$ such that $\eta=0$ on $\partial \Omega$

Strictly stable critical points

$$
\begin{aligned}
& \partial^{2} J(F)[X]=\int_{\partial F}|\nabla(X \cdot \nu)|^{2}-\left|B_{F}\right|^{2}(X \cdot \nu)^{2} d \mathcal{H}^{2}-2 \int_{\Omega \backslash F} W\left(E\left(w_{x}\right)\right) d x \\
& \quad-\int_{\partial F} \partial_{\nu}\left(W\left(E\left(u_{F}\right)\right)\right)(X \cdot \nu)^{2} d \mathcal{H}^{2}-\int_{\partial F}\left(H_{\partial F}-W\left(E\left(u_{F}\right)\right)\right) \operatorname{div}_{\partial F}\left((X \cdot \nu) X_{\tau}\right) d \mathcal{H}^{2}
\end{aligned}
$$

where w_{x} satisfies

$$
\int_{\Omega \backslash F} \mathbb{C} E\left(w_{x}\right): E(\eta) d x=-\int_{\partial F} \operatorname{div}_{\partial F}\left((X \cdot \nu) E\left(u_{F}\right)\right) \cdot \eta d \mathcal{H}^{2}
$$

for all $\eta \in H^{1}\left(\Omega \backslash F ; \mathbb{R}^{3}\right)$ such that $\eta=0$ on $\partial \Omega$
F is strictly stable if for all $X \neq 0$ with $\operatorname{div} X=0$ in a nhood of ∂F

$$
\partial^{2} J(F)[X]>0
$$

Long time existence

Theorem (F-Julin-Morini, 2018)

Let $G \subset \subset \Omega$ be a smooth strictly stable critical point.
There exists $\delta>0$ such that if $F_{o} \subset \Omega$ satisfies

$$
\partial F_{0}=\left\{x+h_{0}(x) \nu_{G}: x \in \partial G,\left\|h_{0}\right\|_{H^{3}(\partial G)} \leq \delta\right\},
$$

then the unique solution $\left(F_{t}\right)_{t>0}$ of the flow with initial datum F_{0} is defined for all times $t>0$.

Moreover $F_{t} \rightarrow G H^{3}$-exponentially fast.

Long time existence

Theorem (F-Julin-Morini, 2018)

Let $G \subset \subset \Omega$ be a smooth strictly stable critical point.
There exists $\delta>0$ such that if $F_{o} \subset \Omega$ satisfies

$$
\partial F_{0}=\left\{x+h_{0}(x) \nu_{G}: x \in \partial G,\left\|h_{0}\right\|_{H^{3}(\partial G)} \leq \delta\right\},
$$

then the unique solution $\left(F_{t}\right)_{t>0}$ of the flow with initial datum F_{0} is defined for all times $t>0$.

Moreover $F_{t} \rightarrow G H^{3}$-exponentially fast.
But we can say more.

Denote by $\Gamma_{1}, \ldots, \Gamma_{m}$ the connected components of ∂G and by $\mathcal{O}_{1}, \ldots \mathcal{O}_{m}$ the open sets enclosed by the Γ_{i}

Denote by $\Gamma_{1}, \ldots, \Gamma_{m}$ the connected components of ∂G and by $\mathcal{O}_{1}, \ldots \mathcal{O}_{m}$ the open sets enclosed by the Γ_{i}
G is stationary if

$$
H_{\partial G}-W\left(E\left(u_{G}\right)\right)=\lambda_{i} \quad \text { on } \Gamma_{i}, i=1, \ldots, m
$$

Denote by $\Gamma_{1}, \ldots, \Gamma_{m}$ the connected components of ∂G and by $\mathcal{O}_{1}, \ldots \mathcal{O}_{m}$ the open sets enclosed by the Γ_{i}
G is stationary if

$$
H_{\partial G}-W\left(E\left(u_{G}\right)\right)=\lambda_{i} \quad \text { on } \Gamma_{i}, i=1, \ldots, m
$$

∂G has m connected components and F_{o} is close to G in H^{3}

Denote by $\Gamma_{1}, \ldots, \Gamma_{m}$ the connected components of ∂G and by $\mathcal{O}_{1}, \ldots \mathcal{O}_{m}$ the open sets enclosed by the Γ_{i}
G is stationary if

$$
H_{\partial G}-W\left(E\left(u_{G}\right)\right)=\lambda_{i} \quad \text { on } \Gamma_{i}, i=1, \ldots, m
$$

∂G has m connected components and F_{o} is close to G in H^{3}

$$
\Longrightarrow \quad \partial F_{o}, \partial F_{t} \text { have } m \text { connected components }
$$

Denote by $\Gamma_{1}, \ldots, \Gamma_{m}$ the connected components of ∂G and by $\mathcal{O}_{1}, \ldots \mathcal{O}_{m}$ the open sets enclosed by the Γ_{i}
G is stationary if

$$
H_{\partial G}-W\left(E\left(u_{G}\right)\right)=\lambda_{i} \quad \text { on } \Gamma_{i}, i=1, \ldots, m
$$

∂G has m connected components and F_{0} is close to G in H^{3}

$$
\Longrightarrow \quad \partial F_{o}, \partial F_{t} \text { have } m \text { connected components }
$$

Moreover

$$
\left|\mathcal{O}_{i, t}\right|=\left|\mathcal{O}_{i, o}\right| \quad \forall i=1, \ldots, m \quad \text { and } \quad \forall t>0
$$

Denote by $\Gamma_{1}, \ldots, \Gamma_{m}$ the connected components of ∂G and by $\mathcal{O}_{1}, \ldots \mathcal{O}_{m}$ the open sets enclosed by the Γ_{i}
G is stationary if

$$
H_{\partial G}-W\left(E\left(u_{G}\right)\right)=\lambda_{i} \quad \text { on } \Gamma_{i}, i=1, \ldots, m
$$

∂G has m connected components and F_{o} is close to G in H^{3}

$$
\Longrightarrow \quad \partial F_{o}, \partial F_{t} \text { have } m \text { connected components }
$$

Moreover

$$
\left|\mathcal{O}_{i, t}\right|=\left|\mathcal{O}_{i, o}\right| \quad \forall i=1, \ldots, m \quad \text { and } \quad \forall t>0
$$

$$
\text { then } \quad F_{t} \rightarrow F_{\infty} \quad \text { in } H^{3}
$$

where F_{∞} is the only stationary point H^{3}-close to G s.t.

$$
\left|\mathcal{O}_{i, \infty}\right|=\left|\mathcal{O}_{i, o}\right| \quad \forall i=1, \ldots, m
$$

THANK YOU FOR YOUR ATTENTION!

