A boundary value problem for the Monge-Ampère equation

(joint with Shibing Chen and Xu-Jia Wang)

University of Wollongong, Australia

January 23, 2019

The 7th Trilateral Meeting on Nonlinear PDEs and Applications @ National Cheng Kung University

Global regularities

Sketch of proof

More recent results

OUTLINE

INTRODUCTION

- A natural boundary condition
- Applications

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

< ∃⇒ University of Wollongong 2 / 28

Global regularities

Sketch of proof

More recent results

OUTLINE

1 INTRODUCTION

- A natural boundary condition
- Applications

2 GLOBAL REGULARITIES

- $C^{2,\alpha}$ regularity
- W^{2,p} regularity

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 2 / 28

< ∃→

Global regularities

Sketch of proof

More recent results

OUTLINE

INTRODUCTION

- A natural boundary condition
- Applications

2 GLOBAL REGULARITIES

- $C^{2,\alpha}$ regularity
- W^{2,p} regularity

3 SKETCH OF PROOF

- Uniform density
- Uniform obliqueness

< A >

-

Global regularities

Sketch of proof

More recent results

OUTLINE

INTRODUCTION

- A natural boundary condition
- Applications

2 GLOBAL REGULARITIES

- $C^{2,\alpha}$ regularity
- W^{2,p} regularity

SKETCH OF PROOF

- Uniform density
- Uniform obliqueness

4 MORE RECENT RESULTS

- Regularity in dimension two
- Regularity in non-convex domains

3.5

Global regularities

Sketch of proof

More recent results

A BOUNDARY VALUE PROBLEM

• Consider the Monge-Ampère equation

det
$$D^2 u = f$$
 in Ω ,

subject to the natural boundary condition

 $Du(\Omega) = \Omega^*.$

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 3 / 28

Global regularities

Sketch of proof

More recent results

(日)

A BOUNDARY VALUE PROBLEM

Consider the Monge-Ampère equation

$$\det D^2 u = f \qquad \text{in } \Omega,$$

subject to the natural boundary condition

 $Du(\Omega) = \Omega^*.$

 Assume that *f* is a given, positive function. Ω, Ω^{*} ⊂ ℝⁿ are two bounded, convex domains with C^{1,1} boundaries.

Global regularities

Sketch of proof

More recent results

A BOUNDARY VALUE PROBLEM

• Consider the Monge-Ampère equation

$$\det D^2 u = f \qquad \text{in } \Omega,$$

subject to the natural boundary condition

 $Du(\Omega) = \Omega^*.$

- Assume that *f* is a given, positive function. Ω, Ω^{*} ⊂ ℝⁿ are two bounded, convex domains with C^{1,1} boundaries.
- This boundary value problem has many applications, such as in optimal transportation, minimal Lagrangian, & convex geometry.

Global regularities

Sketch of proof

More recent results

APPLICATION IN OPTIMAL TRANSPORTATION

Let *T* : (Ω, ρ) → (Ω*, ρ*) be the optimal mapping that minimising the total cost

$$\mathcal{C}(T) := \int_{\Omega} c(x, T(x)) \rho(x) \, dx$$

among all measure preserving mappings, where ρ, ρ^* are two probability measures, and *c* is the cost function.

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 4 / 28

< ロ > < 同 > < 回 > < 回 > .

Global regularities

Sketch of proof

More recent results

APPLICATION IN OPTIMAL TRANSPORTATION

Let *T* : (Ω, ρ) → (Ω*, ρ*) be the optimal mapping that minimising the total cost

$$\mathcal{C}(T) := \int_{\Omega} c(x, T(x)) \rho(x) \, dx$$

among all measure preserving mappings, where ρ,ρ^* are two probability measures, and c is the cost function.

• If $c(x, y) = \frac{1}{2}|x - y|^2$ (or equivalently $c(x, y) = x \cdot y$), the optimal mapping *T* is characterised by T = Du, where *u* is convex and satisfies the natural boundary value problem

$$\left\{ \begin{array}{ll} \det D^2 u \ = \frac{\rho}{\rho^*(Du)} & \text{in } \Omega, \\ Du(\Omega) \ = \Omega^*. \end{array} \right.$$

Global regularities

Sketch of proof

More recent results

APPLICATION IN GEOMETRY

Let Ω, Ω^{*} ⊂ ℝ² be two smooth domains with equal area. Find an area-preserving diffeomorphism *F* : Ω → Ω^{*} such that the graph

$$\Sigma = \{(x, F(x)) : x \in \Omega\}$$

is a minimal surface in $\mathbb{R}^4\simeq\mathbb{R}^2\times\mathbb{R}^2.$

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 5 / 28

< ロ > < 同 > < 回 > < 回 >

Global regularities

Sketch of proof

More recent results

APPLICATION IN GEOMETRY

Let Ω, Ω^{*} ⊂ ℝ² be two smooth domains with equal area. Find an area-preserving diffeomorphism *F* : Ω → Ω^{*} such that the graph

$$\Sigma = \{(x, F(x)) : x \in \Omega\}$$

is a minimal surface in $\mathbb{R}^4\simeq\mathbb{R}^2\times\mathbb{R}^2.$

• *F* is a.-p. implies that Σ is a Lagrangian surface in (\mathbb{R}^4, ω) with the symplectic form $\omega = dx_1 \wedge dx_2 - dy_1 \wedge dy_2$, where $dx_1 \wedge dx_2$ and $dy_1 \wedge dy_2$ are the standard area forms on Ω , Ω^* , respectively.

Global regularities

Sketch of proof

More recent results

APPLICATION IN GEOMETRY

Let Ω, Ω^{*} ⊂ ℝ² be two smooth domains with equal area. Find an area-preserving diffeomorphism *F* : Ω → Ω^{*} such that the graph

$$\Sigma = \{(x, F(x)) : x \in \Omega\}$$

is a minimal surface in $\mathbb{R}^4\simeq\mathbb{R}^2\times\mathbb{R}^2.$

- *F* is a.-p. implies that Σ is a Lagrangian surface in (\mathbb{R}^4, ω) with the symplectic form $\omega = dx_1 \wedge dx_2 dy_1 \wedge dy_2$, where $dx_1 \wedge dx_2$ and $dy_1 \wedge dy_2$ are the standard area forms on Ω , Ω^* , respectively.
- Σ is minimal implies that the Lagrangian angle β is constant. By choosing a proper β, one has F = ∇u and

$$\left(\begin{array}{c} \det D^2 u \ = 1 \ \ \mathrm{in} \ \Omega, \\ D u (\Omega) \ = \Omega^*. \end{array} \right)$$

Introduction	Global regularities	Sketch of proof	More recent results
Remarks			

 Following the terminology of **Pogorelov**, the natural b.v.p. is also known as the "2nd b.v.p." (The "1st b.v.p." is the Dirichlet problem.)

Introduction 000●	Global regularities	Sketch of proof	More recent results
Remarks			

- Following the terminology of **Pogorelov**, the natural b.v.p. is also known as the "2nd b.v.p." (The "1st b.v.p." is the Dirichlet problem.)
- In the 1950's assuming both domains are convex **Pogorelov** obtained a "generalised" solution in the sense of Alexandrov.

Introduction	Global regularities	Sketch of proof	More recent results
Remarks			

- Following the terminology of **Pogorelov**, the natural b.v.p. is also known as the "2nd b.v.p." (The "1st b.v.p." is the Dirichlet problem.)
- In the 1950's assuming both domains are convex **Pogorelov** obtained a "generalised" solution in the sense of Alexandrov.
- In the 1990's Brenier obtained the existence and uniqueness of a weak solution provided |∂Ω| = |∂Ω*| = 0 and ∫_Ω f = |Ω*|.

Introduction	Global regularities	Sketch of proof	More recent results
Remarks			

- Following the terminology of **Pogorelov**, the natural b.v.p. is also known as the "2nd b.v.p." (The "1st b.v.p." is the Dirichlet problem.)
- In the 1950's assuming both domains are convex **Pogorelov** obtained a "generalised" solution in the sense of Alexandrov.
- In the 1990's Brenier obtained the existence and uniqueness of a weak solution provided |∂Ω| = |∂Ω*| = 0 and ∫_Ω f = |Ω*|.
- Our study focuses on the (global) regularity of the solution of

$$\left\{ \begin{array}{ll} \det D^2 u \ = f \ \ \mathrm{in} \ \Omega, \\ Du(\Omega) \ = \Omega^*. \end{array} \right.$$

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Global regularities

Sketch of proof

More recent results

GLOBAL REGULARITY IN HÖLDER SPACE

THEOREM (DELANOË, Ann. Inst. H. Poincaré, 1991)

Assume that $\Omega, \Omega^* \subset \mathbb{R}^2$ are **uniformly convex** and smooth, then $f \in C^{\infty}(\overline{\Omega})$ implies that $u \in C^{\infty}(\overline{\Omega})$,

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 7 / 28

< ロ > < 同 > < 回 > < 回 >

Global regularities

Sketch of proof

More recent results

GLOBAL REGULARITY IN HÖLDER SPACE

THEOREM (DELANOË, Ann. Inst. H. Poincaré, 1991)

Assume that $\Omega, \Omega^* \subset \mathbb{R}^2$ are **uniformly convex** and smooth, then $f \in C^{\infty}(\overline{\Omega})$ implies that $u \in C^{\infty}(\overline{\Omega})$,

THEOREM (URBAS, J. Reine Angew. Math., 1997)

Assume that $\Omega, \Omega^* \subset \mathbb{R}^n$ are **uniformly convex** and $\partial\Omega, \partial\Omega^* \in C^{2,1}$. Then $f \in C^{1,1}(\overline{\Omega})$ implies that $u \in C^{2,\alpha}(\overline{\Omega})$ for any $\alpha \in (0,1)$.

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 7 / 28

Global regularities

Sketch of proof

More recent results

GLOBAL REGULARITY IN HÖLDER SPACE

THEOREM (DELANOË, Ann. Inst. H. Poincaré, 1991)

Assume that $\Omega, \Omega^* \subset \mathbb{R}^2$ are **uniformly convex** and smooth, then $f \in C^{\infty}(\overline{\Omega})$ implies that $u \in C^{\infty}(\overline{\Omega})$,

THEOREM (URBAS, J. Reine Angew. Math., 1997)

Assume that $\Omega, \Omega^* \subset \mathbb{R}^n$ are **uniformly convex** and $\partial\Omega, \partial\Omega^* \in C^{2,1}$. Then $f \in C^{1,1}(\overline{\Omega})$ implies that $u \in C^{2,\alpha}(\overline{\Omega})$ for any $\alpha \in (0,1)$.

THEOREM (CAFFARELLI, Ann. Math., 1996)

Assume that $\partial\Omega$, $\partial\Omega^*$ are C^2 and **uniformly convex**. Then $f \in C^{\alpha}(\overline{\Omega})$ with $\alpha \in (0, 1)$ implies that $u \in C^{2, \alpha'}(\overline{\Omega})$ for some $0 < \alpha' < \alpha$.

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 7 / 28

Global regularities

Sketch of proof

More recent results

GLOBAL REGULARITY IN HÖLDER SPACE

► The *uniform convexity* is crucial in the above global regularities.

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 8 / 28

Global regularities

Sketch of proof

More recent results

GLOBAL REGULARITY IN HÖLDER SPACE

► The *uniform convexity* is crucial in the above global regularities.

► For arbitrary positive and smooth functions f, the convexity of domains is necessary for the global C^1 regularity.

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 8 / 28

GLOBAL REGULARITY IN HÖLDER SPACE

► The *uniform convexity* is crucial in the above global regularities.

► For arbitrary positive and smooth functions f, the convexity of domains is necessary for the global C^1 regularity.

► Various counterexamples were constructed by **Cafferalli**, **Urbas**, and **Ma-Trudinger-Wang** in optimal transportation.

GLOBAL REGULARITY IN HÖLDER SPACE

► The *uniform convexity* is crucial in the above global regularities.

► For arbitrary positive and smooth functions f, the convexity of domains is necessary for the global C^1 regularity.

► Various counterexamples were constructed by **Cafferalli**, **Urbas**, and **Ma-Trudinger-Wang** in optimal transportation.

THEOREM (CAFFARELLI, CPAM, 1992)

Assume that Ω and Ω^* are bounded convex domains, and $f \ge 0$ satisfies the doubling condition. Then $u \in C^{1,\alpha}(\overline{\Omega})$ for some $\alpha \in (0, 1)$.

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 8 / 28

ヘロト ヘヨト ヘヨト ヘヨト

Global regularities

Sketch of proof

More recent results

GLOBAL REGULARITY IN SOBOLEV SPACE

THEOREM (CHEN-FIGALLI, JFA, 2017)

Assume that Ω , Ω^* are C^2 smooth and **uniformly convex**. Then f is continuous implies that $u \in W^{2,p}(\overline{\Omega})$ for all $p \ge 1$.

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 9 / 28

< D > < A > < B >

Global regularities

Sketch of proof

More recent results

GLOBAL REGULARITY IN SOBOLEV SPACE

THEOREM (CHEN-FIGALLI, JFA, 2017)

Assume that Ω , Ω^* are C^2 smooth and **uniformly convex**. Then f is continuous implies that $u \in W^{2,p}(\overline{\Omega})$ for all $p \ge 1$.

▶ The proof in [Chen-Figalli] uses the estimates in [Caffarelli, *Ann. Math.*, 1996] that require the domains are C^2 and uniformly convex.

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 9 / 28

< ロ > < 同 > < 回 > < 回 >

Global regularities

Sketch of proof

More recent results

・ロット (雪) ・ ヨ)

GLOBAL REGULARITY IN SOBOLEV SPACE

THEOREM (CHEN-FIGALLI, JFA, 2017)

Assume that Ω , Ω^* are C^2 smooth and **uniformly convex**. Then f is continuous implies that $u \in W^{2,p}(\overline{\Omega})$ for all $p \ge 1$.

- ▶ The proof in [Chen-Figalli] uses the estimates in [Caffarelli, Ann. Math., 1996] that require the domains are C^2 and uniformly convex.
- ▶ The global $W^{2,p}$ regularity for the Dirichlet problem was obtained by [Savin, *PAMS*, 2013].

Global regularities

Sketch of proof

More recent results

GLOBAL REGULARITY IN SOBOLEV SPACE

THEOREM (CHEN-FIGALLI, JFA, 2017)

Assume that Ω , Ω^* are C^2 smooth and **uniformly convex**. Then f is continuous implies that $u \in W^{2,p}(\overline{\Omega})$ for all $p \ge 1$.

- ▶ The proof in [Chen-Figalli] uses the estimates in [Caffarelli, *Ann. Math.*, 1996] that require the domains are C^2 and uniformly convex.
- ▶ The global $W^{2,p}$ regularity for the Dirichlet problem was obtained by [Savin, *PAMS*, 2013].
- ► The interior $W^{2,p}$ (and also $C^{2,\alpha}$) estimate was proved by [Caffarelli, *Ann. Math.*, 1990].

・ロット (雪) (日) (日)

Global regularities

Sketch of proof

More recent results

OUR MAIN RESULTS

THEOREM (CHEN-L.-WANG, 2017, ARXIV:1802.07518)

Assume that $\Omega, \Omega^* \subset \mathbb{R}^n$ are **convex** with $C^{1,1}$ boundary. Then (i) $f \in C^{\alpha}(\overline{\Omega})$ implies that $u \in C^{2,\alpha}(\overline{\Omega})$ for the same $\alpha \in (0,1)$. (ii) $f \in C^0(\overline{\Omega})$ implies that $u \in W^{2,p}(\overline{\Omega})$ for all $p \ge 1$.

• Surprisingly, we find that the *uniform convexity* can be dropped, and the boundary smoothness can be reduced to $C^{1,1}$.

< ロ > < 同 > < 回 > < 回 >

Global regularities

Sketch of proof

More recent results

OUR MAIN RESULTS

THEOREM (CHEN-L.-WANG, 2017, ARXIV:1802.07518)

Assume that $\Omega, \Omega^* \subset \mathbb{R}^n$ are **convex** with $C^{1,1}$ boundary. Then (i) $f \in C^{\alpha}(\overline{\Omega})$ implies that $u \in C^{2,\alpha}(\overline{\Omega})$ for the same $\alpha \in (0,1)$. (ii) $f \in C^0(\overline{\Omega})$ implies that $u \in W^{2,p}(\overline{\Omega})$ for all $p \ge 1$.

- Surprisingly, we find that the *uniform convexity* can be dropped, and the boundary smoothness can be reduced to $C^{1,1}$.
- We obtain the sharp boundary C^{2,α} regularity when f ∈ C^α(Ω), for the same α ∈ (0, 1).

Global regularities

Sketch of proof

More recent results

OUR MAIN RESULTS

THEOREM (CHEN-L.-WANG, 2017, ARXIV:1802.07518)

Assume that $\Omega, \Omega^* \subset \mathbb{R}^n$ are **convex** with $C^{1,1}$ boundary. Then (i) $f \in C^{\alpha}(\overline{\Omega})$ implies that $u \in C^{2,\alpha}(\overline{\Omega})$ for the same $\alpha \in (0,1)$. (ii) $f \in C^0(\overline{\Omega})$ implies that $u \in W^{2,p}(\overline{\Omega})$ for all $p \ge 1$.

- Surprisingly, we find that the *uniform convexity* can be dropped, and the boundary smoothness can be reduced to $C^{1,1}$.
- We obtain the sharp boundary C^{2,α} regularity when f ∈ C^α(Ω), for the same α ∈ (0, 1).
- When *f* is Dini continuous, we also prove that $D^2 u \in C^0(\overline{\Omega})$.

< ロ > < 同 > < 回 > < 回 > .

Global regularities

Sketch of proof

More recent results

OUR MAIN RESULTS

THEOREM (CHEN-L.-WANG, 2017, ARXIV:1802.07518)

Assume that $\Omega, \Omega^* \subset \mathbb{R}^n$ are **convex** with $C^{1,1}$ boundary. Then (i) $f \in C^{\alpha}(\overline{\Omega})$ implies that $u \in C^{2,\alpha}(\overline{\Omega})$ for the same $\alpha \in (0,1)$. (ii) $f \in C^0(\overline{\Omega})$ implies that $u \in W^{2,p}(\overline{\Omega})$ for all $p \ge 1$.

- Surprisingly, we find that the *uniform convexity* can be dropped, and the boundary smoothness can be reduced to $C^{1,1}$.
- We obtain the sharp boundary C^{2,α} regularity when f ∈ C^α(Ω), for the same α ∈ (0, 1).
- When *f* is Dini continuous, we also prove that $D^2 u \in C^0(\overline{\Omega})$.
- For Dirichlet problem, sharp boundary C^{2,α} estimates were obtain by [Trudinger-Wang, Ann. Math., 2008] and [Savin, JAMS, 2013].

Introduction 0000	Global regularities ○○○○●	Sketch of proof	More recent results
OUR STRATE	Ϋ́		

Our proof is based on delicate analysis on sub-level sets of solution

$$\begin{split} S_h(x_0) &:= \left\{ x \in \Omega : u(x) < \ell_{x_0}(x) + h, \ \ell_{x_0} \text{ supports } u \text{ at } x_0 \right\}, \\ S_h^c(x_0) &:= \left\{ x \in \mathbb{R}^n : u(x) < \hat{\ell}(x) + h, \ \hat{\ell}|_{x_0} = u|_{x_0}, \ S_h^c(x_0) \text{ centred at } x_0 \right\} \end{split}$$

near the boundary and uses various techniques on the Monge-Ampère equation. The main steps are:

Introd	u	ct	io	n
0000				

Global regularities

Sketch of proof

More recent results

OUR STRATEGY

Our proof is based on delicate analysis on sub-level sets of solution

$$\begin{split} S_h(x_0) &:= \left\{ x \in \Omega : u(x) < \ell_{x_0}(x) + h, \ \ell_{x_0} \text{ supports } u \text{ at } x_0 \right\}, \\ S_h^c(x_0) &:= \left\{ x \in \mathbb{R}^n : u(x) < \hat{\ell}(x) + h, \ \hat{\ell}|_{x_0} = u|_{x_0}, \ S_h^c(x_0) \text{ centred at } x_0 \right\} \end{split}$$

near the boundary and uses various techniques on the Monge-Ampère equation. The main steps are:

- **1** Uniform density $(|\Omega \cap S_h^c(x)| / |S_h^c(x)| \ge \delta_0, \forall x \in \partial \Omega.)$
- **2** Tangential regularity (*u* is $C^{1,\alpha}$ tangentially, $\forall \alpha \in (0, 1)$.)
- Solution Uniform obliqueness $(\langle \nu(x), \nu^*(Du(x)) \rangle \ge \mu > 0, \forall x \in \partial \Omega.)$
- **(**Boundary regularity ($C^{2,\alpha}$ and $W^{2,p}$.)

・ロッ ・雪 ・ ・ ヨ ・ ・

Global regularities

Sketch of proof

More recent results

STEP 1. UNIFORM DENSITY

LEMMA

Assume that Ω , Ω^* are bounded convex domains with $C^{1,1}$ boundary, and that $0 \in \partial \Omega$. Then

$$rac{\mathcal{N}ol(\Omega\cap m{S}^c_h(0))}{\mathcal{N}ol(m{S}^c_h(0))}\geq \delta_0>0$$
 .

for some positive constant δ_0 , independent of u and h.

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 12 / 28

Global regularities

Sketch of proof

More recent results

STEP 1. UNIFORM DENSITY

LEMMA

Assume that Ω , Ω^* are bounded convex domains with $C^{1,1}$ boundary, and that $0 \in \partial \Omega$. Then

$$rac{\mathcal{Vol}(\Omega\cap m{S}^c_h(0))}{\mathcal{Vol}(m{S}^c_h(0))}\geq \delta_0>0$$
 ,

for some positive constant δ_0 , independent of u and h.

- The uniform density was proved by [Caffarelli, Ann. Math., 1996], assuming that Ω is polynomially convex.
- We relax the polynomial convexity to the convexity of domains with *C*^{1,1} boundary.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Global regularities

Sketch of proof

More recent results

PROOF OF LEMMA

Assume that e_n is the inner normal of ∂Ω at 0. Let S'_h and S'_{Ω,h} be respectively the projections of S^c_h(0) and Ω ∩ S^c_h(0) on {x_n = 0}. Then, it suffices to prove

$$|S'_{\Omega,h}| \ge C|S'_h|. \tag{1}$$

・ロト ・ ママト

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 13 / 28

Global regularities

Sketch of proof

More recent results

PROOF OF LEMMA

Assume that *e_n* is the inner normal of ∂Ω at 0. Let S'_h and S'_{Ω,h} be respectively the projections of S^c_h(0) and Ω ∩ S^c_h(0) on {x_n = 0}. Then, it suffices to prove

$$|S'_{\Omega,h}| \ge C|S'_h|. \tag{1}$$

2 For any unit vector $e \in \{x_n = 0\}$, denote

$$\lambda_{e} = \sup\{(x - y) \cdot e : x, y \in S'_{\Omega,h}\},\ r_{e} = \sup\{t : te \in S'_{h}\}.$$

By induction, one can show that if

$$\frac{\lambda_{\boldsymbol{e}}}{r_{\boldsymbol{e}}} \geq \boldsymbol{C} \quad \forall \boldsymbol{e} \in \partial \boldsymbol{B}_1(\boldsymbol{0}) \cap \{\boldsymbol{x}_n = \boldsymbol{0}\}, \tag{2}$$

then (1) holds.

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 13 / 28

Global regularities

Sketch of proof

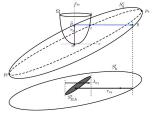
More recent results

PROOF OF LEMMA

Solution Assume λ_{e_1}/r_{e_1} is sufficiently small. Choose the most "right" point p_r and the most "left" point p_l on $\partial S_h^c(0)$. Then, for some $\delta \in (0, 1)$

$$p_r \cdot e_1 \ge r_{e_1} > C z_n^{1/2} \ge C h^{rac{1}{2(1+\delta)}};$$

 $|q_r - q_l| := |Du(p_r) - Du(p_l)| \le C rac{h}{p_r \cdot e_1} \le C h^{rac{1+2\delta}{2+2\delta}}.$



Global regularities

Sketch of proof

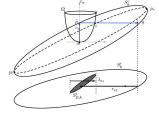
More recent results

PROOF OF LEMMA

Solution Assume λ_{e_1}/r_{e_1} is sufficiently small. Choose the most "right" point p_r and the most "left" point p_l on $\partial S_h^c(0)$. Then, for some $\delta \in (0, 1)$

$$p_r \cdot e_1 \ge r_{e_1} > C z_n^{1/2} \ge C h^{rac{1}{2(1+\delta)}};$$

 $|q_r - q_l| := |Du(p_r) - Du(p_l)| \le C rac{h}{p_r \cdot e_1} \le C h^{rac{1+2\delta}{2+2\delta}}.$



Solution Let p_0 be the minimum point of $u - \ell$ and $q_0 = Du(p_0) \in \overline{q_l q_r}$. Let $q^* = q_0 + \sigma e^* \in \partial \Omega^*$ s.t. $|q_0 - q^*| = dist(q_0, \partial \Omega^*)$. Then

$$\sigma \leq {\pmb{C}} |{\pmb{q}}_{\pmb{r}} - {\pmb{q}}_{\pmb{l}}|^2 \leq {\pmb{C}} {\pmb{h}}^{1 + rac{\delta}{1 + \delta}}$$

 $d_{e^*} := \sup\{x \cdot e^* : x \in S_h^c(0)\} \approx h/\sigma \ge h^{-\frac{\delta}{1+\delta}} \to \infty$

as $h \rightarrow 0$. Contradicts the strict convexity of u.

Global regularities

Sketch of proof

More recent results

Some corollaries

COROLLARY

Let *T* be a unimodular linear transform. If *T* normalises $S_h^c[u](0)$ s.t. $T\{S_h^c[u](0)\} \approx B_{Ch^{1/2}}$, then $T^* = (T^t)^{-1}$ normalises $S_h^c[v](0)$ s.t. $T^*\{S_h^c[v](0)\} \approx B_{Ch^{1/2}}$, where *v* is the dual potential function.

COROLLARY

For h > 0 is small, \exists a constant C independent of u and h, s.t.

$$|x \cdot y| \leq Ch, \quad \forall x \in S_h^c[u](0), \ y \in S_h^c[v](0),$$

and $\forall x \in \partial S_h^c[u](0), \exists y \in \partial S_h^c[v](0) \text{ s.t.}$

$$x \cdot y \geq C^{-1}h.$$

A boundary value problem for the Monge-Ampère equation

ヘロン 人間 とくほ とくほう

Global regularities

Sketch of proof

More recent results

STEP 2. TANGENTIAL $C^{1,\alpha}$ regularity

Let $0 \in \partial \Omega$, locally $\partial \Omega = \{x_n = \rho(x')\}$ for some convex $\rho \in C^{1,1}$ and

$$\rho(0) = 0, \quad D\rho(0) = 0.$$

Let f be a positive continuous function. It suffices to show

LEMMA $\forall \alpha \in (0, 1), \exists a small constant C = C_{\alpha} > 0, independent of h, s.t.$ $S_h^c(0) \cap \{x_n = 0\} \supset B_{C_{\alpha}h^{1/(1+\alpha)}}(0) \cap \{x_n = 0\}.$

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 16 / 28

▲□▶▲□▶▲□▶▲□▶ □ のQで

Global regularities

Sketch of proof

More recent results

STEP 2. TANGENTIAL $C^{1,\alpha}$ regularity

Let $0 \in \partial \Omega$, locally $\partial \Omega = \{x_n = \rho(x')\}$ for some convex $\rho \in C^{1,1}$ and

$$\rho(0) = 0, \quad D\rho(0) = 0.$$

Let *f* be a positive continuous function. It suffices to show

LEMMA

 $\forall \alpha \in (0, 1), \exists a small constant C = C_{\alpha} > 0, independent of h, s.t.$

$$S^{c}_{h}(0) \cap \{x_{n} = 0\} \supset B_{C_{\alpha}h^{1/(1+\alpha)}}(0) \cap \{x_{n} = 0\}.$$

- Note that if ∂Ω ∈ C² and uniformly convex, it will be quadratic after blowing-up as in [Caffarelli, Ann. Math., 1996].
- In our case, we alternatively control the "slope" of S^c_h along the blowing-up process.

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 16 / 28

▲□▶▲□▶▲□▶▲□▶ □ のQで

Global regularities

Sketch of proof

More recent results

STRATEGY OF THE PROOF

1 If $C^{1,\alpha}$ fails in e_1 direction, i.e. S_h^c is too "narrow" in e_1 direction, then after normalisation $\mathcal{T}, \mathcal{T}(\Omega)$ tends to be flat in e_1 direction.

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 17 / 28

Global regularities

Sketch of proof

More recent results

STRATEGY OF THE PROOF

- If $C^{1,\alpha}$ fails in e_1 direction, i.e. S_h^c is too "narrow" in e_1 direction, then after normalisation $\mathcal{T}, \mathcal{T}(\Omega)$ tends to be flat in e_1 direction.
- ② Denote D_h by erasing the dependence on x_1 in $\mathcal{T}(S_h^c \cap \Omega)$. Approximate *u* by a solution *w* of

$$\begin{cases} \det D^2 w = \chi_{D_h} & \text{in } \mathcal{T}(S_h^c), \\ w = u & \text{on } \partial \mathcal{T}(S_h^c). \end{cases}$$

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 17 / 28

< ロ > < 同 > < 回 > < 回 > .

Global regularities

Sketch of proof

More recent results

STRATEGY OF THE PROOF

- If $C^{1,\alpha}$ fails in e_1 direction, i.e. S_h^c is too "narrow" in e_1 direction, then after normalisation $\mathcal{T}, \mathcal{T}(\Omega)$ tends to be flat in e_1 direction.
- ② Denote D_h by erasing the dependence on x_1 in $\mathcal{T}(S_h^c \cap \Omega)$. Approximate *u* by a solution *w* of

$$\left\{ egin{array}{ll} \det D^2 w \ = \chi_{D_h} & ext{in } \mathcal{T}(S_h^c), \ w \ = u & ext{on } \partial \mathcal{T}(S_h^c). \end{array}
ight.$$

Solution By Pogorelov's interior C^2 estimate, *w* is $C^{1,1}$ in e_1 direction.

・ロット (雪) (日) (日)

Global regularities

Sketch of proof

More recent results

STRATEGY OF THE PROOF

- If $C^{1,\alpha}$ fails in e_1 direction, i.e. S_h^c is too "narrow" in e_1 direction, then after normalisation $\mathcal{T}, \mathcal{T}(\Omega)$ tends to be flat in e_1 direction.
- ② Denote D_h by erasing the dependence on x_1 in $\mathcal{T}(S_h^c \cap \Omega)$. Approximate *u* by a solution *w* of

$$\begin{cases} \det D^2 w = \chi_{D_h} & \text{in } \mathcal{T}(S_h^c), \\ w = u & \text{on } \partial \mathcal{T}(S_h^c). \end{cases}$$

- Solution By Pogorelov's interior C^2 estimate, w is $C^{1,1}$ in e_1 direction.
- Note that Vol{D_h − T(S^c_h ∩ Ω)} = o(h). By the maximum principle, |w − u| → 0 as h → 0. Changing back to the second variation of u in e₁, we derive a contradiction.

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

Global regularities

Sketch of proof

More recent results

STEP 3. UNIFORM OBLIQUENESS

LEMMA

Assume that $\partial \Omega$, $\partial \Omega^* \in C^{1,1}$ are convex, $f \in C^0$ is positive. Let $0 \in \partial \Omega$ and $Du(0) = 0 \in \partial \Omega^*$. Then \exists a positive constant μ s.t.

 $\langle \nu(\mathbf{0}), \nu^*(\mathbf{0}) \rangle \geq \mu > \mathbf{0},$

where ν, ν^* are unit inner normals of $\partial\Omega, \partial\Omega^*$, respectively.

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 18 / 28

イロト イポト イヨト イヨト

Global regularities

Sketch of proof

More recent results

STEP 3. UNIFORM OBLIQUENESS

LEMMA

Assume that $\partial \Omega$, $\partial \Omega^* \in C^{1,1}$ are convex, $f \in C^0$ is positive. Let $0 \in \partial \Omega$ and $Du(0) = 0 \in \partial \Omega^*$. Then \exists a positive constant μ s.t.

 $\langle \nu(\mathbf{0}), \nu^*(\mathbf{0}) \rangle \geq \mu > \mathbf{0},$

where ν, ν^* are unit inner normals of $\partial \Omega, \partial \Omega^*$, respectively.

- Uniform obliqueness is a key ingredient in obtaining the boundary regularity, and is also necessary for D^2u to be bounded.
- Previously, both the uniform convexity and smoothness of $\partial\Omega$, $\partial\Omega^*$ play a critical role, as defining functions provide natural barriers.
- We relax these assumptions and give a completely different proof.

イロト イポト イヨト イヨト

Global regularities

Sketch of proof

More recent results

PROOF OF OBLIQUENESS

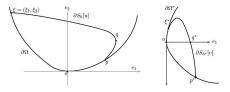
For convenience, we demonstrate our main ideas in dimension two.

() Suppose to the contrary that $\nu(0) = e_2$ and $\nu^*(0) = e_1$, we have

$$u_1 = u_{x_1} > 0 \text{ in } \Omega,$$

 $v_2 = v_{y_2} > 0 \text{ in } \Omega^*.$

Let q, ξ be the most "right", "left" points on $\partial S_h(0) \cap \overline{\Omega}$, respectively.



Global regularities

Sketch of proof

More recent results

PROOF OF OBLIQUENESS

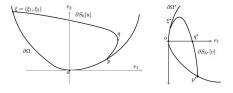
For convenience, we demonstrate our main ideas in dimension two.

() Suppose to the contrary that $\nu(0) = e_2$ and $\nu^*(0) = e_1$, we have

$$u_1 = u_{x_1} > 0 \text{ in } \Omega,$$

 $v_2 = v_{y_2} > 0 \text{ in } \Omega^*.$

Let q, ξ be the most "right", "left" points on $\partial S_h(0) \cap \overline{\Omega}$, respectively.



 S_h is almost "balanced", in the sense that, for all h > 0 small

$$q_1 \ge \delta_0 |\xi_1|, \quad q = (q_1, q_2), \xi = (\xi_1, \xi_2),$$

where $\delta_0 > 0$ is a constant independent of *h*.

Global regularities

Sketch of proof

More recent results

PROOF OF OBLIQUENESS

Solution Assume locally $\partial \Omega = \{x_2 = \rho(x_1)\}$ with $\rho(t) \le |t|^{1+\alpha}$ for some $\alpha > 0$. For t > 0, denote

$$\underline{u}(t) := \inf\{u(t, x_2) : x_2 \ge \rho(t)\},\\ \underline{u}_1(t) := \inf\{u_1(t, x_2) : x_2 \ge \rho(t)\}.$$

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 20 / 28

э

(日)

Global regularities

Sketch of proof

More recent results

PROOF OF OBLIQUENESS

Solution Assume locally $\partial \Omega = \{x_2 = \rho(x_1)\}$ with $\rho(t) \le |t|^{1+\alpha}$ for some $\alpha > 0$. For t > 0, denote

$$\underline{u}(t) := \inf\{u(t, x_2) : x_2 \ge \rho(t)\},\\ \underline{u}_1(t) := \inf\{u_1(t, x_2) : x_2 \ge \rho(t)\}.$$

• We obtain the asymptotic behaviour for t > 0 small,

$$\underline{u}(t) \leq Ct^{2+\alpha}, \qquad \underline{u}_1(t) \leq Ct^{1+\alpha}.$$

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 20 / 28

< ロ > < 同 > < 回 > < 回 > .

Global regularities

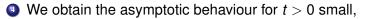
Sketch of proof

More recent results

PROOF OF OBLIQUENESS

Solution Assume locally $\partial \Omega = \{x_2 = \rho(x_1)\}$ with $\rho(t) \le |t|^{1+\alpha}$ for some $\alpha > 0$. For t > 0, denote

$$\underline{u}(t) := \inf\{u(t, x_2) : x_2 \ge \rho(t)\},\\ \underline{u}_1(t) := \inf\{u_1(t, x_2) : x_2 \ge \rho(t)\}.$$



$$\underline{u}(t) \leq Ct^{2+\alpha}, \qquad \underline{u}_1(t) \leq Ct^{1+\alpha}.$$

The above asymptotic behaviour is preserved along a proper blowing-up sequence, and the limit profile is

det
$$D^2 u = f(0)$$
 in $\Omega_0 = \{x_2 > \rho_0(x_1)\},\$

for some $\rho_0 \ge 0$ convex, satisfing $\rho_0(t) \le Ct^{1+\alpha}$ for t > 0 small.

Global regularities

Sketch of proof

More recent results

PROOF OF OBLIQUENESS

So By approximation, we may assume the limit *u* is smooth. By differentiating the boundary condition $Du(\partial \Omega) = \partial \Omega^*$, we have

 $u_{12}(t, \rho(t)) < 0$, for t > 0 small.

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 21 / 28

< ロ > < 同 > < 回 > < 回 > < 回 > <

Global regularities

Sketch of proof

More recent results

PROOF OF OBLIQUENESS

So By approximation, we may assume the limit *u* is smooth. By differentiating the boundary condition $Du(\partial \Omega) = \partial \Omega^*$, we have

$$u_{12}(t, \rho(t)) < 0$$
, for $t > 0$ small.

Output Construct $w(x) := u_1 + u - x_1 u_1$, then $w_2(t, \rho(t)) < 0$. Denote

 $\underline{w}(t) = \inf\{w(t, x_2) : x_2 > \rho(t)\}, \text{ for } t > 0 \text{ small.}$

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 21 / 28

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへで

Global regularities

Sketch of proof

More recent results

PROOF OF OBLIQUENESS

So By approximation, we may assume the limit *u* is smooth. By differentiating the boundary condition $Du(\partial \Omega) = \partial \Omega^*$, we have

$$u_{12}(t, \rho(t)) < 0$$
, for $t > 0$ small.

Output Construct $w(x) := u_1 + u - x_1 u_1$, then $w_2(t, \rho(t)) < 0$. Denote

 $\underline{w}(t) = \inf\{w(t, x_2) : x_2 > \rho(t)\}, \text{ for } t > 0 \text{ small}.$

- Solution $U^{ij}D_{ij}w = 0$, where $\{U^{ij}\}$ is the cofactor matrix of D^2u . By maximum principle, w(t) is concave.
- **2** By asymptotic behaviour $\underline{w}(t) \leq C|t|^{1+\alpha}$, thus $\underline{w}'(t) \to 0$ as $t \to 0$.

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 21 / 28

Global regularities

Sketch of proof

More recent results

PROOF OF OBLIQUENESS

So By approximation, we may assume the limit *u* is smooth. By differentiating the boundary condition $Du(\partial \Omega) = \partial \Omega^*$, we have

$$u_{12}(t, \rho(t)) < 0$$
, for $t > 0$ small.

Onstruct $w(x) := u_1 + u - x_1 u_1$, then $w_2(t, \rho(t)) < 0$. Denote

$$\underline{w}(t) = \inf\{w(t, x_2) : x_2 > \rho(t)\}, \text{ for } t > 0 \text{ small}.$$

- Solution $U^{ij}D_{ij}w = 0$, where $\{U^{ij}\}$ is the cofactor matrix of D^2u . By maximum principle, $\underline{w}(t)$ is concave.
- **2** By asymptotic behaviour $\underline{w}(t) \leq C|t|^{1+\alpha}$, thus $\underline{w}'(t) \to 0$ as $t \to 0$.
- 1 implies that $\underline{w}(t) \equiv 0$ for all t > 0 small, which contradicts with the fact that u(x) > 0, $u_1(x) > 0$ for all $x \neq 0$.

Global regularities

Sketch of proof

More recent results

STEP 4. GLOBAL ESTIMATES

LEMMA

Assume that $\partial\Omega$, $\partial\Omega^* \in C^{1,1}$ are convex, $f \in C^0$ is positive. Then $u \in C^{1,1-\varepsilon}(\overline{\Omega})$, for any small $\varepsilon > 0$, .

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 22 / 28

Global regularities

Sketch of proof

More recent results

STEP 4. GLOBAL ESTIMATES

LEMMA

Assume that $\partial\Omega$, $\partial\Omega^* \in C^{1,1}$ are convex, $f \in C^0$ is positive. Then $u \in C^{1,1-\varepsilon}(\overline{\Omega})$, for any small $\varepsilon > 0$, .

 By the uniform obliqueness and a linear transform of coordinates, we may assume that ν(0) = ν*(0) = e_n. Denote

$$D^+_{h,a} = \{x \in \mathbb{R}^n : u(x) < h\} \cap \{x_n > a\}, \quad a \ge 0.$$

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 22 / 28

< ロ > < 同 > < 回 > < 回 > .

Global regularities

Sketch of proof

More recent results

STEP 4. GLOBAL ESTIMATES

LEMMA

Assume that $\partial\Omega$, $\partial\Omega^* \in C^{1,1}$ are convex, $f \in C^0$ is positive. Then $u \in C^{1,1-\varepsilon}(\overline{\Omega})$, for any small $\varepsilon > 0$, .

 By the uniform obliqueness and a linear transform of coordinates, we may assume that ν(0) = ν*(0) = e_n. Denote

$$D_{h,a}^+ = \{x \in \mathbb{R}^n : u(x) < h\} \cap \{x_n > a\}, \quad a \ge 0.$$

Let a_h be the smallest number s.t. D⁺_{h,a_h} ⊂ Ω. Denote D⁺_{h,a_h} by D⁺_h.
Let D⁻_h be the reflection of D⁺_h w.r.t. {x_n = a_h}, & D_h := D⁺_h ∪ D⁻_h.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Global regularities

Sketch of proof

More recent results

STEP 4. GLOBAL ESTIMATES

LEMMA

Assume that $\partial\Omega$, $\partial\Omega^* \in C^{1,1}$ are convex, $f \in C^0$ is positive. Then $u \in C^{1,1-\varepsilon}(\overline{\Omega})$, for any small $\varepsilon > 0$, .

 By the uniform obliqueness and a linear transform of coordinates, we may assume that ν(0) = ν*(0) = e_n. Denote

$$D^+_{h,a} = \{x \in \mathbb{R}^n : u(x) < h\} \cap \{x_n > a\}, \quad a \ge 0.$$

- Let a_h be the smallest number s.t. $D_{h,a_h}^+ \subset \Omega$. Denote D_{h,a_h}^+ by D_h^+ .
- Let D_h^- be the reflection of D_h^+ w.r.t. $\{x_n = a_h\}, \& D_h := D_h^+ \cup D_h^-$.
- It suffices to show D_h is close to a ball of radius $h^{1/2}$, namely

$$B_{C^{-1}h^{\frac{1}{2}+\varepsilon}}(x_h)\subset D_h\subset B_{Ch^{\frac{1}{2}-\varepsilon}}(x_h),$$

for any given small $\varepsilon > 0$, where the centre $x_h = a_h e_n$.

Global regularities

Sketch of proof

More recent results

Global $W^{2,p}$ estimate

To prove the global $W^{2,p}$ estimate, we have following observations:

• Let $S_h(x) \subset \Omega$ and $T_h(S_h(x)) \sim B_{h^{1/2}}$ with a unimodular linear transform T_h . From the above $C^{1,\alpha}$ regularity for all $\alpha < 1$ $\|T_h\|, \|T_h^{-1}\| \lesssim h^{-\varepsilon}, \quad \forall \varepsilon > 0.$

(日)

Global regularities

Sketch of proof

More recent results

Global $W^{2,p}$ estimate

To prove the global $W^{2,p}$ estimate, we have following observations:

- Let $S_h(x) \subset \Omega$ and $T_h(S_h(x)) \sim B_{h^{1/2}}$ with a unimodular linear transform T_h . From the above $C^{1,\alpha}$ regularity for all $\alpha < 1$ $||T_h||, ||T_h^{-1}|| \leq h^{-\varepsilon}, \quad \forall \varepsilon > 0.$
- **2** By covering lemma, \exists disjoint $\{S_{\delta h_i}(x_i)\}$ s.t. $\Omega \subset \bigcup_{i=1}^{\infty} S_{h_i/2}(x_i)$.

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 23 / 28

< ロ > < 同 > < 回 > < 回 > .

Global regularities

Sketch of proof

More recent results

Global $W^{2,p}$ estimate

To prove the global $W^{2,p}$ estimate, we have following observations:

- Let $S_h(x) \subset \Omega$ and $T_h(S_h(x)) \sim B_{h^{1/2}}$ with a unimodular linear transform T_h . From the above $C^{1,\alpha}$ regularity for all $\alpha < 1$ $||T_h||, ||T_h^{-1}|| \lesssim h^{-\varepsilon}, \quad \forall \varepsilon > 0.$
- **2** By covering lemma, \exists disjoint $\{S_{\delta h_i}(x_i)\}$ s.t. $\Omega \subset \bigcup_{i=1}^{\infty} S_{h_i/2}(x_i)$.
- Solution From interior estimates, $\forall d/2 < h_i < d$ for a small constant d > 0, $\int_{S_{h_i/2}(x)} \|D^2 u\|^p dx \le C d^{\frac{1}{2} - 3\varepsilon p}.$

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Global regularities

Sketch of proof

More recent results

Global $W^{2,p}$ estimate

To prove the global $W^{2,p}$ estimate, we have following observations:

- Let $S_h(x) \subset \Omega$ and $T_h(S_h(x)) \sim B_{h^{1/2}}$ with a unimodular linear transform T_h . From the above $C^{1,\alpha}$ regularity for all $\alpha < 1$ $||T_h||, ||T_h^{-1}|| \leq h^{-\varepsilon}, \quad \forall \varepsilon > 0.$
- ② By covering lemma, ∃ disjoint { $S_{\delta h_i}(x_i)$ } s.t. Ω ⊂ $\bigcup_{i=1}^{\infty} S_{h_i/2}(x_i)$.
- Solution From interior estimates, $\forall d/2 < h_i < d$ for a small constant d > 0, $\int_{S_{h_i/2}(x)} \|D^2 u\|^p dx \le C d^{\frac{1}{2} - 3\varepsilon p}.$
- (a) Let $d = 2^{-k}$, $k = 0, 1, 2, \cdots$. By adding over k we obtain $\int_{\Omega} \|D^2 u\|^p \, dx \le C + C \sum_{k=0}^{\infty} 2^{-k(\frac{1}{2} - 3\varepsilon p)}.$

< ロ > < 同 > < 回 > < 回 > .

Global regularities

Sketch of proof

More recent results

Global $W^{2,p}$ estimate

To prove the global $W^{2,p}$ estimate, we have following observations:

- Let $S_h(x) \subset \Omega$ and $T_h(S_h(x)) \sim B_{h^{1/2}}$ with a unimodular linear transform T_h . From the above $C^{1,\alpha}$ regularity for all $\alpha < 1$ $\|T_h\|, \|T_h^{-1}\| \lesssim h^{-\varepsilon}, \quad \forall \varepsilon > 0.$
- ② By covering lemma, ∃ disjoint { $S_{\delta h_i}(x_i)$ } s.t. Ω ⊂ $\bigcup_{i=1}^{\infty} S_{h_i/2}(x_i)$.
- Solution From interior estimates, $\forall d/2 < h_i < d$ for a small constant d > 0, $\int_{S_{h_i/2}(x)} \|D^2 u\|^p dx \le C d^{\frac{1}{2} - 3\varepsilon p}.$
- Let $d = 2^{-k}$, $k = 0, 1, 2, \cdots$. By adding over k we obtain $\int_{\Omega} \|D^2 u\|^p \, dx \le C + C \sum_{k=0}^{\infty} 2^{-k(\frac{1}{2} - 3\varepsilon p)}.$

S $\forall p \ge 1$, as $3\varepsilon p < 1/4$, the above series is convergent.

< ロ > < 同 > < 回 > < 回 >

Global regularities

Sketch of proof

More recent results

Global $C^{2,\alpha}$ estimate

▶ The global $C^{2,\alpha'}$ estimate for some $\alpha' \in (0,\alpha)$ was established in [Caffarelli, *Ann. Math.*, 1996]. We found that the exponent α' can be improved to the same α , (namely $f \in C^{\alpha}(\overline{\Omega}) \Longrightarrow u \in C^{2,\alpha}(\overline{\Omega})$). ▶ In the following we adopt the techniques from [Wang, *Chinese Ann. Math.*, 2006] and [Jian-Wang, *SIAM J. Math. Anal.*, 2007].

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 24 / 28

Global regularities

Sketch of proof

More recent results

Global $C^{2,\alpha}$ estimate

▶ The global $C^{2,\alpha'}$ estimate for some $\alpha' \in (0,\alpha)$ was established in [Caffarelli, *Ann. Math.*, 1996]. We found that the exponent α' can be improved to the same α , (namely $f \in C^{\alpha}(\overline{\Omega}) \Longrightarrow u \in C^{2,\alpha}(\overline{\Omega})$). ▶ In the following we adopt the techniques from [Wang, *Chinese Ann. Math.*, 2006] and [Jian-Wang, *SIAM J. Math. Anal.*, 2007].

O Approximation sequence: Let *w* be the solution of

$$\det D^2 w = 1 \text{ in } D_h, \quad w = h \text{ on } \partial D_h.$$

② Maximum principle: Let $|f - 1| \le h^{\delta}$ for some $\delta \in (0, 1/2)$, then

$$|u-w| \leq Ch^{1+\delta}$$
 in $D_h \cap \Omega$.

Solving det $D^2 u_k = f_k$ in D_k , $u_k = h_k$ on ∂D_k , we can obtain

$$|D^2 u(z) - D^2 u(0)| \leq C |z|^{\alpha}.$$

Global regularities

Sketch of proof

More recent results

FURTHER REMARKS

▶ Our argument also implies that if *f* is Dini continuous, that is if

$$\int_0^1 \frac{\omega_f(t)}{t} dt < \infty, \quad \omega(t) = \sup\{f(x) - f(y) : |x - y| < t\},$$

then $D^2 u$ is positive definite and continuous up to the boundary $\partial \Omega$.

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 25 / 28

(日)

Global regularities

Sketch of proof

More recent results

FURTHER REMARKS

▶ Our argument also implies that if *f* is Dini continuous, that is if

$$\int_0^1 \frac{\omega_f(t)}{t} dt < \infty, \quad \omega(t) = \sup\{f(x) - f(y) : |x - y| < t\},$$

then D^2u is positive definite and continuous up to the boundary $\partial\Omega$.

► We can further reduce the $C^{1,1}$ smoothness assumption on the boundaries $\partial\Omega$, $\partial\Omega^*$ to be $C^{1,1-\theta}$ for some small $\theta > 0$ depending on the global $C^{1,\delta}$ regularity of *u*. (see the next slide)

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Global regularities

Sketch of proof

More recent results

FURTHER REMARKS

 \blacktriangleright Our argument also implies that if *f* is Dini continuous, that is if

$$\int_0^1 \frac{\omega_f(t)}{t} dt < \infty, \quad \omega(t) = \sup\{f(x) - f(y) : |x - y| < t\},$$

then D^2u is positive definite and continuous up to the boundary $\partial\Omega$.

► We can further reduce the $C^{1,1}$ smoothness assumption on the boundaries $\partial\Omega$, $\partial\Omega^*$ to be $C^{1,1-\theta}$ for some small $\theta > 0$ depending on the global $C^{1,\delta}$ regularity of *u*. (see the next slide)

► From [Ma-Trudinger-Wang, *ARMA*, 2005], it's known that $\forall f > 0$ smooth, the convexity of domains is necessary for $u \in C^1(\overline{\Omega})$. However, for a fixed f > 0, by our results and a perturbation argument, we can show that u is smooth up to the boundary, if the domains are smooth perturbations of convex ones, even though they are not convex themselves. (see the next, next slide)

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 25 / 28

Global regularities

Sketch of proof

More recent results

RECENT RESULTS IN DIMENSION TWO

Very recently, by an iteration argument we obtain the following regularity results in dimension two.

THEOREM (CHEN-L.-WANG, 2018, ARXIV:1806.09482)

Assume that Ω, Ω^* are two bounded convex domains in \mathbb{R}^2 .

- If $\partial\Omega$, $\partial\Omega^* \in C^{1,\alpha}$, and $f \in C^{\alpha}(\overline{\Omega})$ is positive, for some $\alpha \in (0, 1)$. Then $\|u\|_{C^{2,\alpha}(\overline{\Omega})} \leq C$ for the same α .
- If $\partial\Omega$, $\partial\Omega^* \in C^{1,\varepsilon}$ for some $\varepsilon > 0$, and $f \in C^0(\overline{\Omega})$ is positive. Then $\|u\|_{W^{2,p}(\overline{\Omega})} \leq C$ for all $p \geq 1$.
- With no further smoothness assumption on domains, and λ⁻¹ < f < λ for some λ > 0. Then ||u||_{W^{2,1+ε}(Ω)} ≤ C, where ϵ, C > 0 are universal constants depending only on λ and the domains.

Global regularities

Sketch of proof

More recent results

RECENT RESULTS IN NON-CONVEX DOMAINS

► Given a bounded domain $\Lambda \subset \mathbb{R}^n$, we say Λ is δ -close to Ω in $C^{1,1}$ norm, if \exists a bijective mapping $\Phi : \Omega \to \Lambda$ s.t. $\Phi \in C^{1,1}(\overline{\Omega})$ and

$$\|\Phi - Id\|_{C^{1,1}(\overline{\Omega})} \leq \delta.$$

THEOREM (CHEN-L.-WANG, SCIENCE CHINA Mathematics, 2019)

Let Λ , Λ^* be $C^{1,1}$ domains that are δ -close to convex domains Ω , Ω^* in $C^{1,1}$ norm, respectively. Suppose that $f \in C^{\alpha}(\overline{\Lambda})$, for some $\alpha \in (0, 1)$. Then, \exists a small constant $\delta_0 > 0$ depending only on Ω , Ω^* and $\|f\|_{C^{\alpha}(\overline{\Lambda})}$, s.t. the solution $u \in C^{2,\alpha}(\overline{\Lambda})$, provided $\delta < \delta_0$.

(日)

Global regularities

Sketch of proof

More recent results

RECENT RESULTS IN NON-CONVEX DOMAINS

► Given a bounded domain $\Lambda \subset \mathbb{R}^n$, we say Λ is δ -close to Ω in $C^{1,1}$ norm, if \exists a bijective mapping $\Phi : \Omega \to \Lambda$ s.t. $\Phi \in C^{1,1}(\overline{\Omega})$ and

$$\|\Phi - Id\|_{C^{1,1}(\overline{\Omega})} \leq \delta.$$

THEOREM (CHEN-L.-WANG, SCIENCE CHINA Mathematics, 2019)

Let Λ , Λ^* be $C^{1,1}$ domains that are δ -close to convex domains Ω , Ω^* in $C^{1,1}$ norm, respectively. Suppose that $f \in C^{\alpha}(\overline{\Lambda})$, for some $\alpha \in (0, 1)$. Then, \exists a small constant $\delta_0 > 0$ depending only on Ω , Ω^* and $\|f\|_{C^{\alpha}(\overline{\Lambda})}$, s.t. the solution $u \in C^{2,\alpha}(\overline{\Lambda})$, provided $\delta < \delta_0$.

▶ Similarly, we also have the global $W^{2,p}$ estimate when $f \in C^0(\overline{\Lambda})$, provided the perturbation δ_0 is small enough.

► Interesting application to *Wolfson's problem*: it allows the curvature $\kappa > -\epsilon_0$, $\implies \exists$ the minimal Lagrangian diffeomorphism.

More recent results ○○●

FIGURE: A picture of sunrise at Gold Coast, Australia

Thank you !

A boundary value problem for the Monge-Ampère equation

Jiakun Liu

University of Wollongong 28 / 28

< ロ > < 同 > < 回 > < 回 >