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A classical geometric evolution

Motion by mean curvature: t 7→ Et ⊂ Rd

V = −H∂Et on ∂Et (MCM)

H∂E = ∂Per(E) is the “gradient” of the perimeter  gradient flow structure

• Proposed by Mullins (1956) to describe the evolution of solid phases

• Singularities may appear even from smooth initial data:

Figure: An example of pinching singularity (Grayson ’89).

Question: How to define a global-in-time solution? How to define

a solution starting from irregular initial sets?
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The level set approach

• The level set approach: Describe Et as Et = {u(·, t) ≥ 0}

ut = |∇u| div ∇u|∇u|

u(·, 0) = u0

(LS)

• Proposed by Osher & Sethian (1988) for numerical purposes, as a method to deal

with topological changes.

• Global existence and uniqueness for (LS) by Evans-Spruck (1991) and

Chen-Giga-Goto (1991) with the machinery of viscosity solutions

.
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Non uniqueness by fattening

If one fixes the level set, uniqueness can only hold up to fattening:

Generic Uniqueness : For all but countably many s, no fattening

occurs and the evolution Es is unique.
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The ATW minimizing movements approach

Minimizing movements: En−1 7→ En

min

(
Per(F ) +

1

h

∫
F∆En−1

dist(x , ∂En−1) dx

)
(ATW)

Let Eh(t) be the piecewise interpolation with time step h. Then

Eh(t)→ E (t) for all t > 0, up to subsequences

E (t) is called a flat flow

• F. Almgren, J. E. Taylor, and L.-H. Wang, SIAM J. Control Optim. (1993)

• S. Luckhaus and T. Sturzenhecker, Calc. Var. Partial Differential Equations (1995)

In the classical mean curvature case:

minimal solution ⊆ flat flows ⊆ maximal solution

Question: Does uniqueness of flat flows (up to fattening) hold

also in the general anisotropic, possibly crystalline, case?
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Generalized (nonlocal) perimeters
Chambolle-M.-Ponsiglione, Arch. Ration. Mech. Anal. (2015)

Definition J : M 7→ [0,+∞] is a generalized perimeter if:

• J(E ) < +∞ for all E ∈ C 2 with compact boundary

• J(∅) = J(Rd) = 0

• J(E ) = J(E ′) if |E4E ′| = 0

• J is l.s.c in L1
loc

• J is translation invariant

• J is submodular: for all E , F

J(E ∪ F ) + J(E ∩ F ) ≤ J(E ) + J(F )

J can be extended to a functional on L1
loc by enforcing the coarea

formula

J̃(u) :=

∫ +∞

−∞
J({u > s}) ds

J is submodular ⇐⇒ J̃ is convex ( Chambolle, Giacomini, Lussardi 2010)
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Generalized (nonlocal) curvatures

Definition

We say that κ(·,E ) is the curvature of ∂E w.r.t. J if for any

smooth (Φε)ε, with Φ0 = Id, setting X := ∂Φε
∂ε |ε=0

, one has

d

dε
J
(
Φε(E )

)
|ε=0

=

∫
∂E
κ(x ,E )X (x) · νE (x)dHN−1(x).

Standing assumptions:

• Existence: κ(·,E) is defined for all E of class C2

• Continuity: If En → E in C2 and xn ∈ ∂En → x ∈ ∂E , then κ(xn,En)→ κ(x ,E)

• Non degeneracy: infρ>0 minx∈∂Bρ κ(x ,Bρ) > −∞

Lemma (Monotonicity)

Let E ,F ∈ C 2 with E ⊆ F and let x ∈ ∂F ∩ ∂E. Then

κ(x ,F ) ≤ κ(x ,E ).
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Level set formulation of nonlocal geometric flows

We are interested in

V (x , t) = −κ(x ,E (t)) for t > 0 and x ∈ ∂E (t)

Representing E (0) := {u0 ≥ 0}, one is led to the Cauchy problem:

ut(x , t) + |Du(x , t)|κ(x , {y : u(y , t) ≥ u(x , t)}) = 0

u(0, ·) = u0.

• Weak formulation: The curvature κ is defined only on regular

sets. We consider viscosity solutions.
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A level-by-level generalized ATW scheme

For any fixed time step h > 0, let ThE be the minimal solution to

min
F⊂Rd

{
J(F ) +

1

h

∫
F4E

dist(x , ∂E ) dx

}

Lemma (Discrete Comparison Principle)

E ⊆ E ′ =⇒ ThE ⊆ ThE
′ and dist (ThE , (ThE

′)c) ≥ dist(E ,E ′c)
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Discrete-in-time evolutions

• s > s ′ =⇒ Th{u ≥ s} ⊆ Th{u ≥ s ′}.

• Thus, we may define

Thu(x) := sup{s : x ∈ Th{u ≥ s}} .

• Let u0 ∈ BUC (Rd), constant outside a compact set. We

define

uh(x , t) := (Th)[ t
h

]u0 .
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The main existence and uniqueness result

It can be shown that, up to subsequences, uh → u uniformly on

compact sets

Theorem (Chambolle-M.-Ponsiglione, ARMA 2015)

The limiting function u is a viscosity solution ofut(x , t) + |Du(x , t)|κ(x , {y : u(y , t) ≥ u(x , t)}) = 0

u(0, ·) = u0.

Moreover , if κ is “uniformly continuous” with respect to C 2 -

convergence of sets, then the level set flow is unique, it obeys the

comparison principle, and the set flow t 7→ {x : u(x , t) ≥ s}
depends only on {u0 ≥ s}.
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Some examples covered by the theory
• Smooth anisotropic curvature flows

• Fractional mean curvature flow: for α ∈ (0, 1) let

Jα(E ) :=

∫ ∫
RN×RN

|χE (x)− χE (y)|
|x − y |N+α

dxdy = [χE ]2
H
α
2

G. Gilboa; S. Osher, Multiscale Model. Simul. (2007)

Level set approach: Imbert, Interfaces Free Bound. (2009)

Nonlocal threshold dynamics: Caffarelli & Souganidis, ARMA (2010)

• Capacity-generated flows: J(E ) := Capp(E ;RN), 1 < p < N

 Hele-Shaw type flows Cardaliaguet, p = 2

• Minkowski-type flow:
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Limitations of the theory

Consider a norm φ and the corresponding anisotropic perimeter

Pφ(E ) =

∫
∂E
φ(νE ) dHd−1

The curvature κEφ is the the first variation of Pφ. If φ is smooth,

then κEφ = divτ
(
∇φ(νE )

)

We are interested in

V = −m(νEt )κEt
φ

where the norm m is a mobility

• If φ is smooth (and m(ν) ≡ 1) we apply previous theory

• If φ is non-smooth (e.g. crystalline), then the Cahn-Hoffmann

field ∇φ(νE ) and hence κEφ are not well defined in a classical

way. The previous theory does not apply
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The crystalline case

The unit ball Bφ The Wulff shape Wφ

• Lack of differentiability: the Cahn-Hoffmann field ∇φ(νE ) is

not uniquely defined for some directions

• look at admissible selections z of x 7→ ∂φ(νE (x))

• the crystalline curvature is given by divτz , where divτz has

minimal L2-norm among all admissible fields

• The curvature becomes nonlocal!
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Known results

• The case d = 2: settled by Giga & Giga (2001), by developing

a “crystalline” viscosity approach

• The case d ≥ 3: investigated by many authors, only partial
results were available prior to ours:

• Convex initial data: Bellettini, Caselles, Chambolle & Novaga

(2008)

• Polyhedral initial data: Giga, Gurtin & Matias (1998)

• the well-posedness and the validity of a comparison principle in

the general case has been a long-standing open problem as

well as the uniqueness of the crystalline flat flow
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Recent developments

Chambolle-M.-Ponsiglione 2016

Let φ be any (possibly crystalline) anisotropy. Then, the

anisotropic mean curvature equation

V = −φ(ν)κφ

admits a weak formulation that yields global existence and a

comparison principle in all dimensions and for arbitrary (possibly

unbounded) initial sets

• The result holds for the “natural” mobility m = φ
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Soner’s distance formulation: heuristics

Let t 7→ E (t) be a smooth flow and assume φ to be smooth.

• Set d(·, t) := distφ
◦
(·,E (t)), where distφ

◦
is the distance

induced by φ◦. Then ∂td = −V /φ(νE(t)) on ∂E (t). Thus,

V = −φ(ν)κφ reads

∂td = div(∇φ(∇d)) on ∂E (t) = ∂{d(·, t) = 0}.

• Since the curvatures of the s-level sets of d are non-increasing

in s, we have

∂td ≥ div(∇φ(∇d)) in {d > 0}.

• Analogously, setting dc(·, t) := dist(·,E c(t)), we have

∂td
c ≥ div(∇φ(∇dc)) in {dc > 0}.
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Our new weak formulation of V = −φ(ν)κφ

Definition

Let E := (E (t))t≥0 ⊆ RN × [0,+∞) be a closed tube. We say

that E is a weak superflow if

(a) E (s)
K−→ E (t) as s ↗ t for all t > 0 (left-continuity);

(b) For all t ≥ 0 if E (t) = ∅, then E (s) = ∅ for all s > t;

(c) setting d(x , t) := distφ
◦
(x ,E (t)), then

∂td ≥ divz in RN × (0,T ∗) \ E

in the distributional sense for a suitable z s.t. z ∈ ∂φ(∇d) a.e

and (divz)+ ∈ L∞({d ≥ δ}) for every δ > 0.

Let A := (A(t))t≥0 ⊆ RN × [0,+∞) be a (relatively) open tube.

We say that A is a weak subflow if RN × [0,+∞) \ A is weak

superflow.
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We say that A is a weak subflow if RN × [0,+∞) \ A is weak

superflow.
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Our new weak formulation of V = −φ(ν)κφ

Definition

Let E ⊆ RN × [0,+∞) be a closed tube. We say that E is a weak

flow or solution if:

(a) E is a weak superflow;

(b) A := IntE is a weak subflow;

(c) E = clA.

• Comparison Principle: exploits the distributional formulation

• Existence: via minimizing movements
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Comparison

Let E (0) ⊂ A(0) and let ∆ > 0 be the distance of their

boundaries. Let E be a weak superflow, and A a weak subflow.

Claim: We want to prove that ∆(t) ≥ ∆

∆

∆ + ρ

∆ + ρ

V ≤ −‖div zE‖∞

V ≥ ‖div zF‖∞

Parabolic maximum principle: In a strip S ⊂⊂ A \ E , we want to

prove that ∆(t) ≥ ∆ (at least for short time).

Distances are “rigid”: ∆(t) ≥ ∆ everywhere

Iteration: ∆(t) ≥ ∆ for all times (before T ∗).
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Existence and uniqueness for V = −φ(ν)κφ

Theorem (Chambolle-M.-Ponsiglione, CPAM 2016)

Let φ be any anisotropy and u0 be a uniformly continuous function

in RN . Then, for all but countably many s ∈ R the minimizing

movements scheme starting from E 0
s := {u0 ≥ s} converge to the

unique weak solution Es of V = −φ(ν)κφ, with initial datum E 0
s .

• Generic existence and uniqueness; the bad (countable) set is

the set of levels for which fattening occurs.

• Uniqueness of the level set flow.

After our preprint appeared, Giga-Pozar (preprint 2016): viscosity

approach in three-dimensions for

V = −m(ν)(κφ + 1) ,

for bounded initial sets and when φ is purely crystalline.
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φ-regular mobilities

Definition (φ-regular mobilities)

We say that the mobility m is φ-regular if the m-Wulff shape

satisfies a uniform inner φ-Wulff shape condition.

Remark: if φ is crystalline, then m ≡ 1 is never φ-regular

Chambolle-M.-Novaga-Ponsiglione, to appear

The techniques of Chambolle-M.-Ponsiglione can be pushed to

treat V = −m(νE(t))(κ
E(t)
φ + g(x , t)), when m is φ-regular and g

is bounded forcing term with spatial Lipschitz continuity

Note: the equations V = −κφ or V = −(κφ + 1), with φ

crystalline, are not covered



Two classical ‘’weak” methods Nonlocal motions: a unified theory Crystalline flows: existence and uniqueness

φ-regular mobilities

Definition (φ-regular mobilities)

We say that the mobility m is φ-regular if the m-Wulff shape

satisfies a uniform inner φ-Wulff shape condition.

Remark: if φ is crystalline, then m ≡ 1 is never φ-regular

Chambolle-M.-Novaga-Ponsiglione, to appear

The techniques of Chambolle-M.-Ponsiglione can be pushed to

treat V = −m(νE(t))(κ
E(t)
φ + g(x , t)), when m is φ-regular and g

is bounded forcing term with spatial Lipschitz continuity

Note: the equations V = −κφ or V = −(κφ + 1), with φ

crystalline, are not covered



Two classical ‘’weak” methods Nonlocal motions: a unified theory Crystalline flows: existence and uniqueness

φ-regular mobilities

Definition (φ-regular mobilities)

We say that the mobility m is φ-regular if the m-Wulff shape

satisfies a uniform inner φ-Wulff shape condition.

Remark: if φ is crystalline, then m ≡ 1 is never φ-regular

Chambolle-M.-Novaga-Ponsiglione, to appear

The techniques of Chambolle-M.-Ponsiglione can be pushed to

treat V = −m(νE(t))(κ
E(t)
φ + g(x , t)), when m is φ-regular and g

is bounded forcing term with spatial Lipschitz continuity

Note: the equations V = −κφ or V = −(κφ + 1), with φ

crystalline, are not covered



Two classical ‘’weak” methods Nonlocal motions: a unified theory Crystalline flows: existence and uniqueness

φ-regular mobilities

Definition (φ-regular mobilities)

We say that the mobility m is φ-regular if the m-Wulff shape

satisfies a uniform inner φ-Wulff shape condition.

Remark: if φ is crystalline, then m ≡ 1 is never φ-regular

Chambolle-M.-Novaga-Ponsiglione, to appear

The techniques of Chambolle-M.-Ponsiglione can be pushed to

treat V = −m(νE(t))(κ
E(t)
φ + g(x , t)), when m is φ-regular and g

is bounded forcing term with spatial Lipschitz continuity

Note: the equations V = −κφ or V = −(κφ + 1), with φ

crystalline, are not covered



Two classical ‘’weak” methods Nonlocal motions: a unified theory Crystalline flows: existence and uniqueness

General mobilities

Theorem (Chambolle-M.-Novaga-Ponsiglione, to appear on JAMS)

For any φ and m there exists a unique level set flow uφ,m corre-

sponding to V = −m(ν)(κφ + g), with initial datum u0 .

Moreover, for all but countably many s ∈ R, the set flow

t 7→ {x : uφ,m(t, x) ≥ s} is the unique limit of the ATW scheme

with initial set {u0 ≥ s}. Moreover, the flow obeys the the

comparison principle and the set flow t 7→ {x : uφ,m(t, x) ≥ s}
depends only on {u0 ≥ s}. Finally, if φn → φ and mn → m, then

uφn,mn → uφ,m.

• Idea: Let mn → m, where mn is φ-regular. Then, by delicate

stability estimates on the ATW scheme one can show that the

corresponding {uφ,mn} admit a unique limit.

• The long-standing problem of the well-posedness of crystalline

flows and of the uniqueness of crystalline flat flows is settled.
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Giga & Pozar again

Shortly after, Giga & Pozar (to appear on CPAM) : crystalline

viscosity approach in N-dimensions for

V = −m(νE(t))(κ
E(t)
φ + 1)

Disadvantages of the crystalline viscosity approach:

- φ must be purely crystalline, g constant, and the initial set

bounded;

- the method does not say anything about flat flows.

Advantages of the crystalline viscosity approach:

- it covers non-variational equations of the form V = f (κφ).

In all cases covered by both methods, the two approaches yield the

same solutions.
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Conclusions

• Unifying approach to deal with a general class of nonlocal

curvature flows

• The variational point of view highlights the crucial role of

convexity (submodularity)

• General consistency result between viscosity solutions and

minimizing movements

• The general theory does not apply to the crystalline mean

curvature flow

• New recent approach: provides the first general

well-posedness result for crystalline mean curvature flows valid

in any dimension and for arbitrary initial sets
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Thank you for your attention!
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