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A classical geometric evolution

Motion by mean curvature: t — E, C RY

V =—Hpg,  onOE (MCM)

Hpe = OPer(E) is the “gradient” of the perimeter ~~ gradient flow structure J

® Proposed by Mullins (1956) to describe the evolution of solid phases

® Singularities may appear even from smooth initial data:
Figure: An example of pinching singularity (Grayson '89).

Question: How to define a global-in-time solution? How to define
a solution starting from irregular initial sets?
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The level set approach
e The level set approach: Describe E; as E; = {u(-,t) > 0}

v(,%?

t

&z {U(-b;oj

up = |Vu|div|§5‘ (LS)
u(+,0) = up

® Proposed by Osher & Sethian (1988) for numerical purposes, as a method to deal
with topological changes.

® Global existence and uniqueness for (LS) by Evans-Spruck (1991) and
Chen-Giga-Goto (1991) with the machinery of viscosity solutions.
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Non uniqueness by fattening

If one fixes the level set, uniqueness can only hold up to fattening:

— ,
/N B
O

Generic Uniqueness : For all but countably many s, no fattening

Fattening {u = 0}

occurs and the evolution E; is unique.
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The ATW minimizing movements approach
Minimizing movements: E, 1 +— E,
1
min | Per(F) + / dist(x, 0E,—_1) dx (ATW)
h JeaE,

Let Ex(t) be the piecewise interpolation with time step h. Then
En(t) — E(t) for all t > 0, up to subsequences

E(t) is called a flat rowJ

® F. Almgren, J. E. Taylor, and L.-H. Wang, SIAM J. Control Optim. (1993)

® S. Luckhaus and T. Sturzenhecker, Calc. Var. Partial Differential Equations (1995)

In the classical mean curvature case:
minimal solution C flat flows C maximal solution

Question: Does uniqueness of flat flows (up to fattening) hold
also in the general anisotropic, possibly crystalline, .case?
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Generalized (nonlocal) perimeters
Chambolle-M.-Ponsiglione, Arch. Ration. Mech. Anal. (2015)
Definition J : 9t — [0, +00] is a generalized perimeter if:

e J(E) < 400 for all E € C? with compact boundary
JO0)=J(RY) =0
J(E)=J(E")if |[EAE'| =0

. . 1
Jisls.cin L

J is translation invariant
J is submodular: for all E, F

JEUF)+ J(ENF) < J(E) + J(F)

J can be extended to a functional on L1

loc Dy enforcing the coarea

formula

_ +o0
J(u) = / J({u>s})ds

— 00

J |S Submodular < J |S CONVEX ( Chambolle, Giagomini, Lassardi 2010)
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Generalized (nonlocal) curvatures

Definition
We say that k(-, E) is the curvature of OE w.r.t. J if for any
smooth (®.)., with &y = Id, setting X := 6;;5‘ _,» one has

digJ(q)s(E))\a:o = /8E k(x, E) X(x) - vE(x)dH ().

Standing assumptions:
® Existence: k(-, E) is defined for all E of class C?
® Continuity: If E; — E in C? and x, € OE, — x € OE, then K(Xn, En) = K(x, E)

® Non degeneracy: inf,>0 minxcas, k(x,Bp) > —o0

Lemma (Monotonicity)
Let E,F € C? with E C F and let x € OF N OE. Then
k(x, F) < k(x, E).
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Level set formulation of nonlocal geometric flows
We are interested in

V(x,t) = —r(x, E(t)) fort>0and x € OE(t) ]

Representing £(0) := {up > 0}, one is led to the Cauchy problem:

ug(x, t) + |Du(x, t)|c(x, {y : u(y,t) > u(x,t)}) =0
u(0,-) = wo.

e Weak formulation: The curvature  is defined only on regular
sets. We consider viscosity solutions.
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A level-by-level generalized ATW scheme

For any fixed time step h > 0, let T,E be the minimal solution to
. 1 .
min {J(F) + / dist(x, OE) dx}
FCRY h Jene

Lemma (Discrete Comparison Principle)
E C E' = ThE C ThE' and dist (THE, (ToE')°) > dist(E, E'°)
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Discrete-in-time evolutions

e s>s = Tp{u>s} C Tp{u>s}.

e Thus, we may define
Thu(x) = sup{s : x & Tp{u>s}}.
o Let up € BUC(RY), constant outside a compact set. We

define
un(x,t) = (Tn)lWuo.
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The main existence and uniqueness result

It can be shown that, up to subsequences, up — u uniformly on
compact sets

Theorem (Chambolle-M.-Ponsiglione, ARMA 2015)

The limiting function u is a viscosity solution of

ue(x, £) + |Du(x; t)[r(x, {y : uly,t) = u(x, t)}) = 0
u(0,-) = up.

Moreover , if k is "“uniformly continuous” with respect to C? -
convergence of sets, then the level set flow is unique, it obeys the
comparison principle, and the set flow t — {x : u(x,t) > s}
depends only on {u® > s}.



Two classical “weak” methods Nonlocal motions: a unified theory Crystalline flows: existence and uniqueness

Some examples covered by the theory

e Smooth anisotropic curvature flows



Two classical “weak” methods Nonlocal motions: a unified theory Crystalline flows: existence and uniqueness

Some examples covered by the theory
e Smooth anisotropic curvature flows
e Fractional mean curvature flow: for o € (0,1) let

Ixe(x) — xe(y)| B
//RNxRN |x— |Nta dxdy = [XE] J

G. Gilboa; S. Osher, Multiscale Model. Simul. (2007)




Two classical “weak” methods Nonlocal motions: a unified theory Crystalline flows: existence and uniqueness

Some examples covered by the theory
e Smooth anisotropic curvature flows
e Fractional mean curvature flow: for o € (0,1) let

Ixe(x) — xe(y)|
//RNxRN |x — y|N+o dxdy = [XE]

G. Gilboa; S. Osher, Multiscale Model. Simul. (2007)

Level set approach: Imbert, Interfaces Free Bound. (2009)

Nonlocal threshold dynamics: Caffarelli & Souganidis, ARMA (2010)



Two classical “weak” methods Nonlocal motions: a unified theory Crystalline flows: existence and uniqueness

Some examples covered by the theory
e Smooth anisotropic curvature flows
e Fractional mean curvature flow: for o € (0,1) let

Ixe(x) — xe(y)|
//RNXRN |x — y|N+o dxdy = [XE] J

G. Gilboa; S. Osher, Multiscale Model. Simul. (2007)

Level set approach: Imbert, Interfaces Free Bound. (2009)
Nonlocal threshold dynamics: Caffarelli & Souganidis, ARMA (2010)

e Capacity-generated flows: J(E) := Cap,(E; RY), 1<p< N
~> Hele-Shaw type flows Cardaliaguet, p =2



Two classical “weak” methods Nonlocal motions: a unified theory Crystalline flows: existence and uniqueness

Some examples covered by the theory
e Smooth anisotropic curvature flows
e Fractional mean curvature flow: for o € (0,1) let

Ixe(x) — xe(y)| B
//RNXRN |x— |Nta dxdy = [XE] J

G. Gilboa; S. Osher, Multiscale Model. Simul. (2007)

Level set approach: Imbert, Interfaces Free Bound. (2009)
Nonlocal threshold dynamics: Caffarelli & Souganidis, ARMA (2010)

e Capacity-generated flows: J(E) := Cap,(E; RY), 1<p< N
~> Hele-Shaw type flows Cardaliaguet, p =2

e Minkowski-type flow:

Jp(E) == H (Uxeoe By(x)) J




Two classical “weak” methods Nonlocal motions: a unified theory Crystalline flows: existence and uniqueness

Some examples covered by the theory
e Smooth anisotropic curvature flows
e Fractional mean curvature flow: for o € (0,1) let

Ixe(x) — xe(y)| B
//RNXRN |x— |Nta dxdy = [XE] J

G. Gilboa; S. Osher, Multiscale Model. Simul. (2007)

Level set approach: Imbert, Interfaces Free Bound. (2009)
Nonlocal threshold dynamics: Caffarelli & Souganidis, ARMA (2010)

e Capacity-generated flows: J(E) := Cap,(E; RY), 1<p< N
~> Hele-Shaw type flows Cardaliaguet, p =2

e Minkowski-type flow:

IE) = HMUncoe B () IE)i= [ Flp)(E)dp J




Two classical “weak” methods Nonlocal motions: a unified theory Crystalline flows: existence and uniqueness

Some examples covered by the theory
e Smooth anisotropic curvature flows
e Fractional mean curvature flow: for o € (0,1) let

Ixe(x) — xe(y)| B
//RNXRN |x— |Nta dxdy = [XE] J

G. Gilboa; S. Osher, Multiscale Model. Simul. (2007)

Level set approach: Imbert, Interfaces Free Bound. (2009)
Nonlocal threshold dynamics: Caffarelli & Souganidis, ARMA (2010)

e Capacity-generated flows: J(E) := Cap,(E; RY), 1<p< N
~> Hele-Shaw type flows Cardaliaguet, p =2

e Minkowski-type flow:

IE) = HMUncoe B () IE)i= [ Flp)(E)dp J

Barchiesi, Kang, Lee, Morini, Ponsiglione, MultiscalectMode# 'Simul: (2610)
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e If ¢ is smooth (and m(v) = 1) we apply previous theory
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Limitations of the theory

Consider a norm ¢ and the corresponding anisotropic perimeter
Po(E)= | o(F)dH
OE

The curvature /ig is the the first variation of Py. If ¢ is smooth,
then /s(’f = div, (Vé(vF)) We are interested in

— E:y, Et
V =-—m™)k;

where the norm m is a mobility
e If ¢ is smooth (and m(v) = 1) we apply previous theory

e If ¢ is non-smooth (e.g. crystalline), then the Cahn-Hoffmann
field Vo(vF) and hence /{5 are not well defined in a classical

way.



Two classical “weak” methods Nonlocal motions: a unified theory Crystalline flows: existence and uniqueness

Limitations of the theory

Consider a norm ¢ and the corresponding anisotropic perimeter
Po(E)= | o(F)dH
OE

The curvature /ig is the the first variation of Py. If ¢ is smooth,
then /s('f = div, (Vé(vF)) We are interested in

— E:y, Et
V =-—m™)k;

where the norm m is a mobility
e If ¢ is smooth (and m(v) = 1) we apply previous theory

e If ¢ is non-smooth (e.g. crystalline), then the Cahn-Hoffmann
field Vo(vF) and hence /{g are not well defined in a classical

way. The previous theory does not apply
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o Lack of differentiability: the Cahn-Hoffmann field Vo (v£) is
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o look at admissible selections z of x — d¢(vE(x))

e the crystalline curvature is given by div,z, where div;z has
minimal L?-norm among all admissible fields
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The crystalline case

The unit ball B, The Wulff shape W,

o Lack of differentiability: the Cahn-Hoffmann field Vo (v£) is
not uniquely defined for some directions

o look at admissible selections z of x — d¢(vE(x))

e the crystalline curvature is given by div,z, where div;z has
minimal L?-norm among all admissible fields

e The curvature becomes nonlocall
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Known results

e The case d = 2: settled by Giga & Giga (2001), by developing
a “crystalline” viscosity approach

e The case d > 3: investigated by many authors, only partial
results were available prior to ours:

e Convex initial data: Bellettini, Caselles, Chambolle & Novaga
(2008)

o Polyhedral initial data: Giga, Gurtin & Matias (1998)

e the well-posedness and the validity of a comparison principle in
the general case has been a long-standing open problem as
well as the uniqueness of the crystalline flat flow
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Recent developments

Chambolle-M.-Ponsiglione 2016

Let ¢ be any (possibly crystalline) anisotropy. Then, the
anisotropic mean curvature equation

V=—¢(v) ke

admits a weak formulation that yields global existence and a
comparison principle in all dimensions and for arbitrary (possibly
unbounded) initial sets
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Recent developments

Chambolle-M.-Ponsiglione 2016

Let ¢ be any (possibly crystalline) anisotropy. Then, the
anisotropic mean curvature equation

V=—¢(v) ke

admits a weak formulation that yields global existence and a
comparison principle in all dimensions and for arbitrary (possibly
unbounded) initial sets

e The result holds for the “natural” mobility m = ¢
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Soner's distance formulation: heuristics
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Soner's distance formulation: heuristics
Let t — E(t) be a smooth flow and assume ¢ to be smooth.
o Set d(-, t) := dist®’ (-, E(t)), where dist®’ is the distance
induced by ¢°. Then 9;d = —V//$(vE®)) on DE(t). Thus,
V = —¢(v)kg reads

0ed = div(Vé(Vd))  on DE(t) = {d(-,t) = O}.

e Since the curvatures of the s-level sets of d are non-increasing
in s, we have

Ord > div(Vp(Vd)) in {d > 0}.
e Analogously, setting d°(-, t) := dist(-, E(t)), we have

0:d® > div(Vp(Vde))  in {d° > 0}.
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Our new weak formulation of

Definition
Let E := (E(t))r>0 € RY x [0, +00) be a closed tube. We say
that E is a weak superflow if

(a) E(s) LN E(t) ass /'t for all t > 0 (left-continuity);
(b) Forallt >0 if E(t) =0, then E(s) =0 for all s > t;
(c) setting d(x,t) := dist?" (x, E(t)), then

Ord >divz in RN x (0, T*)\ E

in the distributional sense for a suitable z s.t. z € 0p(Vd) a.e
and (divz)™ € L>°({d > ¢&}) for every 6 > 0.
Let A := (A(t))r>0 C€ RN x [0, +00) be a (relatively) open tube.
We say that A is a weak subflow if RN x [0, +00) \ A is weak
superflow.
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Our new weak formulation of V' = —o(v) ky

Definition
Let E C RN x [0, 400) be a closed tube. We say that E is a weak
flow or solution if:

(a) E is a weak superflow;
(b) A:=1Int E is a weak subflow;
(c) E=CclA.

e Comparison Principle: exploits the distributional formulation

e Existence: via minimizing movements



Two classical “weak” methods Nonlocal motions: a unified theory Crystalline flows: existence and uniqueness

Comparison

Let £(0) C A(0) and let A > 0 be the distance of their
boundaries. Let E be a weak superflow, and A a weak subflow.
Claim: We want to prove that A(t) > A



Two classical “weak” methods Nonlocal motions: a unified theory Crystalline flows: existence and uniqueness

Comparison

Let £(0) C A(0) and let A > 0 be the distance of their
boundaries. Let E be a weak superflow, and A a weak subflow.
Claim: We want to prove that A(t) > A

V 2 ||div zp || A+p

V < —|\div g

Parabolic maximum principle: In a strip S CC A\ E, we want to
prove that A(t) > A (at least for short time).

Distances are "rigid": A(t) > A everywhere

Iteration: A(t) > A for all times (before T*).
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Theorem (Chambolle-M.-Ponsiglione, CPAM 2016)

Let ¢ be any anisotropy and u® be a uniformly continuous function
in RN Then, for all but countably many s € R the minimizing
movements scheme starting from EQ := {u® > s} converge to the

unique weak solution Es of V = —¢(v) kg, with initial datum E?.
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Existence and uniqueness for V' = —¢(v) kg

Theorem (Chambolle-M.-Ponsiglione, CPAM 2016)

Let ¢ be any anisotropy and u® be a uniformly continuous function
in RN Then, for all but countably many s € R the minimizing
movements scheme starting from EQ := {u® > s} converge to the
unique weak solution Es of V = —¢(v) kg, with initial datum E?.

e Generic existence and uniqueness; the bad (countable) set is
the set of levels for which fattening occurs.

e Uniqueness of the level set flow.

After our preprint appeared, Giga-Pozar (preprint 2016): viscosity
approach in three-dimensions for

V=-—m(v)(ry +1),

for bounded initial sets and when ¢ is purely crystalline.
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@-regular mobilities

Definition (¢-regular mobilities)
We say that the mobility m is ¢-regular if the m-Wulff shape

satisfies a uniform inner ¢-Wulff shape condition.

Remark: if ¢ is crystalline, then m = 1 is never ¢-regular

Chambolle-M.-Novaga-Ponsiglione, to appear

The techniques of Chambolle-M.-Ponsiglione can be pushed to
treat V = —m(Z/E(t))(/fg(t) + g(x,t)), when m is ¢-regular and g
is bounded forcing term with spatial Lipschitz continuity

Note: the equations V = —kg4 or V = —(ky + 1), with ¢
crystalline, are not covered
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General mobilities
Theorem (Chambolle-M.-Novaga-Ponsiglione, to appear on JAMS)

For any ¢ and m there exists a unique level set flow u®™ corre-
sponding to V. = —m(v)(ks + g), with initial datum u° .
Moreover, for all but countably many s € R, the set flow
t > {x: u”M(t,x) > s} is the unique limit of the ATW scheme
with initial set {u® > s}. Moreover, the flow obeys the the
comparison principle and the set flow t — {x : u®™(t,x) > s}
depends only on {u® > s}. Finally, if ¢, — ¢ and m, — m, then
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e Idea: Let m, — m, where m,, is ¢-regular. Then, by delicate
stability estimates on the ATW scheme one can show that the
corresponding {u®™} admit a unique limit.
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General mobilities
Theorem (Chambolle-M.-Novaga-Ponsiglione, to appear on JAMS)

For any ¢ and m there exists a unique level set flow u®™ corre-
sponding to V. = —m(v)(ks + g), with initial datum u° .
Moreover, for all but countably many s € R, the set flow

t > {x: u”M(t,x) > s} is the unique limit of the ATW scheme
with initial set {u® > s}. Moreover, the flow obeys the the
comparison principle and the set flow t — {x : u®™(t,x) > s}
depends only on {u® > s}. Finally, if ¢, — ¢ and m, — m, then
ubmmn —y y®m.

e Idea: Let m, — m, where m,, is ¢-regular. Then, by delicate
stability estimates on the ATW scheme one can show that the
corresponding {u®™} admit a unique limit.

e The long-standing problem of the well-posedness of crystalline
flows and of the uniqueness of crystalline flat flows is settled.
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Giga & Pozar again

Shortly after, : crystalline
viscosity approach in N-dimensions for

V = —m(EO)(x5M +1)

Disadvantages of the crystalline viscosity approach:

- ¢ must be purely crystalline, g constant, and the initial set
bounded:

- the method does not say anything about flat flows.
Advantages of the crystalline viscosity approach:

- it covers non-variational equations of the form V = f(xg).

In all cases covered by both methods, the two approaches yield the
same solutions.
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Conclusions

Unifying approach to deal with a general class of nonlocal
curvature flows

The variational point of view highlights the crucial role of
convexity (submodularity)

General consistency result between viscosity solutions and
minimizing movements

The general theory does not apply to the crystalline mean
curvature flow

New recent approach: provides the first general

well-posedness result for crystalline mean curvature flows valid

in any dimension and for arbitrary initial sets
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Thank you for your attention!
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