Existence and uniqueness for nonlocal and crystalline mean curvature flows

Massimiliano Morini University of Parma

Australia-Italy-Taiwan Trilateral Meeting, Tainan, January 2019

Two classical "weak" methods

Nonlocal motions: a unified theory

Crystalline flows: existence and uniqueness

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Plan of the talk

Two classical "weak" methods

Nonlocal motions: a unified theory

Crystalline flows: existence and uniqueness

Two classical "weak" methods

Nonlocal motions: a unified theory

Crystalline flows: existence and uniqueness

Outline

Two classical "weak" methods

Nonlocal motions: a unified theory

Crystalline flows: existence and uniqueness

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

A classical geometric evolution

Motion by mean curvature: $t \mapsto E_t \subset \mathbb{R}^d$

 $V = -H_{\partial E_t} \quad \text{on } \partial E_t \quad (MCM)$

A classical geometric evolution

Motion by mean curvature: $t \mapsto E_t \subset \mathbb{R}^d$

 $V = -H_{\partial E_t} \quad \text{on } \partial E_t \quad (\mathsf{MCM})$

 $H_{\partial E} = \partial Per(E)$ is the "gradient" of the perimeter \rightsquigarrow gradient flow structure

A classical geometric evolution

Motion by mean curvature: $t \mapsto E_t \subset \mathbb{R}^d$

$$V = -H_{\partial E_t}$$
 on ∂E_t (MCM)

 $H_{\partial E} = \partial Per(E)$ is the "gradient" of the perimeter \rightsquigarrow gradient flow structure

• Proposed by Mullins (1956) to describe the evolution of solid phases

A classical geometric evolution

Motion by mean curvature: $t \mapsto E_t \subset \mathbb{R}^d$

$$V = -H_{\partial E_t} \quad \text{on } \partial E_t \quad (MCM)$$

 $H_{\partial E} = \partial Per(E)$ is the "gradient" of the perimeter \rightsquigarrow gradient flow structure

- Proposed by Mullins (1956) to describe the evolution of solid phases
- Singularities may appear even from smooth initial data:

Figure: An example of pinching singularity (Grayson '89).

A classical geometric evolution

Motion by mean curvature: $t \mapsto E_t \subset \mathbb{R}^d$

$$V = -H_{\partial E_t}$$
 on ∂E_t (MCM)

 $H_{\partial E} = \partial Per(E)$ is the "gradient" of the perimeter \rightsquigarrow gradient flow structure

- Proposed by Mullins (1956) to describe the evolution of solid phases
- Singularities may appear even from smooth initial data:

Figure: An example of pinching singularity (Grayson '89).

Question: How to define a global-in-time solution? How to define a solution starting from irregular initial sets?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The level set approach

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The level set approach

• The level set approach: Describe E_t as $E_t = \{u(\cdot, t) \ge 0\}$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The level set approach

• The level set approach: Describe E_t as $E_t = \{u(\cdot, t) \ge 0\}$

$$\begin{cases} u_t = |\nabla u| \operatorname{div} \frac{\nabla u}{|\nabla u|} \\ u(\cdot, 0) = u_0 \end{cases}$$
(LS)

The level set approach

• The level set approach: Describe E_t as $E_t = \{u(\cdot, t) \ge 0\}$

• Proposed by Osher & Sethian (1988) for numerical purposes, as a method to deal with topological changes.

The level set approach

• The level set approach: Describe E_t as $E_t = \{u(\cdot, t) \ge 0\}$

• Proposed by Osher & Sethian (1988) for numerical purposes, as a method to deal with topological changes.

• Global existence and uniqueness for (LS) by Evans-Spruck (1991) and Chen-Giga-Goto (1991) with the machinery of viscosity solutions.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Non uniqueness by fattening

If one fixes the level set, uniqueness can only hold up to fattening:

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Non uniqueness by fattening

If one fixes the level set, uniqueness can only hold up to fattening:

Generic Uniqueness : For all but countably many s, no fattening occurs and the evolution E_s is unique.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The ATW minimizing movements approach Minimizing movements: $E_{n-1} \mapsto E_n$

$$\min\left(\operatorname{Per}(F) + \frac{1}{h}\int_{F\Delta E_{n-1}}\operatorname{dist}(x,\partial E_{n-1})\,dx\right)$$

(ATW)

The ATW minimizing movements approach Minimizing movements: $E_{n-1} \mapsto E_n$ $\min\left(\operatorname{Per}(F) + \frac{1}{h} \int_{F \Delta E_{n-1}} \operatorname{dist}(x, \partial E_{n-1}) dx\right)$ (ATW)

Let $E_h(t)$ be the piecewise interpolation with time step h. Then $E_h(t) \rightarrow E(t)$ for all t > 0, up to subsequences

The ATW minimizing movements approach Minimizing movements: $E_{n-1} \mapsto E_n$ $\min\left(\operatorname{Per}(F) + \frac{1}{h} \int_{F \Delta E_{n-1}} \operatorname{dist}(x, \partial E_{n-1}) dx\right)$ (ATW

Let $E_h(t)$ be the piecewise interpolation with time step h. Then $E_h(t) \rightarrow E(t)$ for all t > 0, up to subsequences

E(t) is called a flat flow

The ATW minimizing movements approach Minimizing movements: $E_{n-1} \mapsto E_n$ $\min\left(\operatorname{Per}(F) + \frac{1}{h} \int_{F \Delta E_{n-1}} \operatorname{dist}(x, \partial E_{n-1}) dx\right)$ (ATW)

Let $E_h(t)$ be the piecewise interpolation with time step h. Then $E_h(t) \rightarrow E(t)$ for all t > 0, up to subsequences

E(t) is called a flat flow

- F. Almgren, J. E. Taylor, and L.-H. Wang, SIAM J. Control Optim. (1993)
- S. Luckhaus and T. Sturzenhecker, Calc. Var. Partial Differential Equations (1995)

The ATW minimizing movements approach Minimizing movements: $E_{n-1} \mapsto E_n$ $\min\left(\operatorname{Per}(F) + \frac{1}{h} \int_{F \Delta E_{n-1}} \operatorname{dist}(x, \partial E_{n-1}) dx\right)$ (ATW)

Let $E_h(t)$ be the piecewise interpolation with time step h. Then $E_h(t) \rightarrow E(t)$ for all t > 0, up to subsequences

E(t) is called a flat flow

• F. Almgren, J. E. Taylor, and L.-H. Wang, SIAM J. Control Optim. (1993)

• S. Luckhaus and T. Sturzenhecker, Calc. Var. Partial Differential Equations (1995) In the classical mean curvature case:

minimal solution \subseteq flat flows \subseteq maximal solution

The ATW minimizing movements approach Minimizing movements: $E_{n-1} \mapsto E_n$ $\min\left(\operatorname{Per}(F) + \frac{1}{h} \int_{F \Delta E_{n-1}} \operatorname{dist}(x, \partial E_{n-1}) dx\right)$ (ATW)

Let $E_h(t)$ be the piecewise interpolation with time step h. Then $E_h(t) \rightarrow E(t)$ for all t > 0, up to subsequences

E(t) is called a flat flow

• F. Almgren, J. E. Taylor, and L.-H. Wang, SIAM J. Control Optim. (1993)

• S. Luckhaus and T. Sturzenhecker, Calc. Var. Partial Differential Equations (1995) In the classical mean curvature case:

minimal solution \subseteq flat flows \subseteq maximal solution

Question: Does uniqueness of flat flows (up to fattening) hold also in the general anisotropic, possibly crystalline, case? Two classical "weak" methods

Nonlocal motions: a unified theory

Crystalline flows: existence and uniqueness

Outline

Two classical ''weak'' methods

Nonlocal motions: a unified theory

Crystalline flows: existence and uniqueness

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Generalized (nonlocal) perimeters Chambolle-M.-Ponsiglione, Arch. Ration. Mech. Anal. (2015)

Generalized (nonlocal) perimeters Chambolle-M.-Ponsiglione, Arch. Ration. Mech. Anal. (2015) Definition $J: \mathfrak{M} \mapsto [0, +\infty]$ is a generalized perimeter if:

- $J(E) < +\infty$ for all $E \in C^2$ with compact boundary
- $J(\emptyset) = J(\mathbb{R}^d) = 0$
- J(E) = J(E') if $|E \triangle E'| = 0$
- J is l.s.c in L^1_{loc}
- J is translation invariant

Generalized (nonlocal) perimeters Chambolle-M.-Ponsiglione, Arch. Ration. Mech. Anal. (2015) Definition $J: \mathfrak{M} \mapsto [0, +\infty]$ is a generalized perimeter if:

- $J(E) < +\infty$ for all $E \in C^2$ with compact boundary
- $J(\emptyset) = J(\mathbb{R}^d) = 0$
- J(E) = J(E') if $|E \triangle E'| = 0$
- J is l.s.c in L^1_{loc}
- J is translation invariant
- J is submodular: for all E, F

 $J(E \cup F) + J(E \cap F) \leq J(E) + J(F)$

Generalized (nonlocal) perimeters Chambolle-M.-Ponsiglione, Arch. Ration. Mech. Anal. (2015) Definition $J : \mathfrak{M} \mapsto [0, +\infty]$ is a generalized perimeter if:

- $J(E) < +\infty$ for all $E \in C^2$ with compact boundary
- $J(\emptyset) = J(\mathbb{R}^d) = 0$
- J(E) = J(E') if $|E \triangle E'| = 0$
- J is l.s.c in L^1_{loc}
- J is translation invariant
- J is submodular: for all E, F

 $J(E \cup F) + J(E \cap F) \leq J(E) + J(F)$

J can be extended to a functional on L^1_{loc} by enforcing the *coarea* formula

$$\widetilde{J}(u) := \int_{-\infty}^{+\infty} J(\{u > s\}) ds$$

Generalized (nonlocal) perimeters Chambolle-M.-Ponsiglione, Arch. Ration. Mech. Anal. (2015) Definition $J : \mathfrak{M} \mapsto [0, +\infty]$ is a generalized perimeter if:

- $J(E) < +\infty$ for all $E \in C^2$ with compact boundary
- $J(\emptyset) = J(\mathbb{R}^d) = 0$
- J(E) = J(E') if $|E \triangle E'| = 0$
- J is l.s.c in L^1_{loc}
- J is translation invariant
- J is submodular: for all E, F

 $J(E \cup F) + J(E \cap F) \leq J(E) + J(F)$

J can be extended to a functional on L^1_{loc} by enforcing the *coarea* formula

$$\widetilde{J}(u) := \int_{-\infty}^{+\infty} J(\{u > s\}) ds$$

J is submodular $\iff \widetilde{J}$ is convex (Chambolle, Giacomini, Lyssardi 2010), $z \gg z = 200$

Generalized (nonlocal) curvatures

Definition

We say that $\kappa(\cdot, E)$ is the curvature of ∂E w.r.t. J if for any smooth $(\Phi_{\varepsilon})_{\varepsilon}$, with $\Phi_0 = Id$, setting $X := \frac{\partial \Phi_{\varepsilon}}{\partial \varepsilon}|_{\varepsilon=0}$, one has

$$\frac{d}{d\varepsilon}J(\Phi_{\varepsilon}(E))_{|_{\varepsilon=0}} = \int_{\partial E} \kappa(x, E) X(x) \cdot \nu^{E}(x) d\mathcal{H}^{N-1}(x).$$

Generalized (nonlocal) curvatures

Definition

We say that $\kappa(\cdot, E)$ is the curvature of ∂E w.r.t. J if for any smooth $(\Phi_{\varepsilon})_{\varepsilon}$, with $\Phi_0 = Id$, setting $X := \frac{\partial \Phi_{\varepsilon}}{\partial \varepsilon}|_{\varepsilon=0}$, one has

$$\frac{d}{d\varepsilon}J(\Phi_{\varepsilon}(E))_{|_{\varepsilon=0}} = \int_{\partial E} \kappa(x, E) X(x) \cdot \nu^{E}(x) d\mathcal{H}^{N-1}(x).$$

Standing assumptions:

- Existence: κ(·, E) is defined for all E of class C²
- Continuity: If $E_n \to E$ in C^2 and $x_n \in \partial E_n \to x \in \partial E$, then $\kappa(x_n, E_n) \to \kappa(x, E)$
- Non degeneracy: inf_{ρ>0} min_{x∈∂B_ρ} κ(x, B_ρ) > −∞

Generalized (nonlocal) curvatures

Definition

We say that $\kappa(\cdot, E)$ is the curvature of ∂E w.r.t. J if for any smooth $(\Phi_{\varepsilon})_{\varepsilon}$, with $\Phi_0 = Id$, setting $X := \frac{\partial \Phi_{\varepsilon}}{\partial \varepsilon}_{|_{\varepsilon=0}}$, one has

$$\frac{d}{d\varepsilon}J(\Phi_{\varepsilon}(E))_{|_{\varepsilon=0}} = \int_{\partial E} \kappa(x, E) X(x) \cdot \nu^{E}(x) d\mathcal{H}^{N-1}(x).$$

Standing assumptions:

- Existence: κ(·, E) is defined for all E of class C²
- Continuity: If $E_n \to E$ in C^2 and $x_n \in \partial E_n \to x \in \partial E$, then $\kappa(x_n, E_n) \to \kappa(x, E)$
- Non degeneracy: inf_{ρ>0} min_{x∈∂B_ρ} κ(x, B_ρ) > −∞

Lemma (Monotonicity)

Let $E, F \in C^2$ with $E \subseteq F$ and let $x \in \partial F \cap \partial E$. Then

 $\kappa(x,F) \leq \kappa(x,E).$

・ロト ・ 日 ・ モー・ トーロ・ うらぐ

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Level set formulation of nonlocal geometric flows

We are interested in

 $V(x,t) = -\kappa(x, E(t))$ for t > 0 and $x \in \partial E(t)$

Level set formulation of nonlocal geometric flows

We are interested in

 $V(x,t) = -\kappa(x,E(t))$ for t > 0 and $x \in \partial E(t)$

Representing $E(0) := \{u_0 \ge 0\}$, one is led to the Cauchy problem:

$$\begin{cases} u_t(x,t) + |Du(x,t)|\kappa(x,\{y: u(y,t) \ge u(x,t)\}) = 0\\ u(0,\cdot) = u_0. \end{cases}$$

Level set formulation of nonlocal geometric flows

We are interested in

 $V(x,t) = -\kappa(x, E(t))$ for t > 0 and $x \in \partial E(t)$

Representing $E(0) := \{u_0 \ge 0\}$, one is led to the Cauchy problem:

$$\begin{cases} u_t(x,t) + |Du(x,t)|\kappa(x,\{y: u(y,t) \ge u(x,t)\}) = 0\\ u(0,\cdot) = u_0. \end{cases}$$

 Weak formulation: The curvature κ is defined only on regular sets. We consider viscosity solutions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A level-by-level generalized ATW scheme

For any fixed time step h > 0, let $T_h E$ be the minimal solution to

$$\min_{F \subset \mathbb{R}^d} \left\{ J(F) + \frac{1}{h} \int_{F \bigtriangleup E} \operatorname{dist}(x, \partial E) \, dx \right\}$$

A level-by-level generalized ATW scheme

For any fixed time step h > 0, let $T_h E$ be the minimal solution to

$$\min_{F \subset \mathbb{R}^d} \left\{ J(F) + \frac{1}{h} \int_{F \bigtriangleup E} \operatorname{dist}(x, \partial E) \, dx \right\}$$

Lemma (Discrete Comparison Principle) $E \subseteq E' \Longrightarrow T_h E \subseteq T_h E'$

A level-by-level generalized ATW scheme

For any fixed time step h > 0, let $T_h E$ be the minimal solution to

$$\min_{F \subset \mathbb{R}^d} \left\{ J(F) + \frac{1}{h} \int_{F \bigtriangleup E} \operatorname{dist}(x, \partial E) \, dx \right\}$$

Lemma (Discrete Comparison Principle) $E \subseteq E' \Longrightarrow T_h E \subseteq T_h E'$ and dist $(T_h E, (T_h E')^c) \ge dist(E, E'^c)$
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Discrete-in-time evolutions

•
$$s > s' \Longrightarrow T_h\{u \ge s\} \subseteq T_h\{u \ge s'\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Discrete-in-time evolutions

•
$$s > s' \Longrightarrow T_h\{u \ge s\} \subseteq T_h\{u \ge s'\}.$$

• Thus, we may define

$$T_h u(x) := \sup\{s : x \in T_h\{u \ge s\}\}$$
.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Discrete-in-time evolutions

•
$$s > s' \Longrightarrow T_h\{u \ge s\} \subseteq T_h\{u \ge s'\}.$$

• Thus, we may define

$$T_h u(x) := \sup\{s : x \in T_h\{u \ge s\}\}$$
.

Let u₀ ∈ BUC(ℝ^d), constant outside a compact set. We define

$$u_h(x,t) := (T_h)^{[\frac{t}{h}]} u_0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The main existence and uniqueness result

It can be shown that, up to subsequences, $u_h \rightarrow u$ uniformly on compact sets

The main existence and uniqueness result

It can be shown that, up to subsequences, $u_h \rightarrow u$ uniformly on compact sets

Theorem (Chambolle-M.-Ponsiglione, ARMA 2015) The limiting function u is a viscosity solution of

$$\begin{cases} u_t(x,t) + |Du(x,t)|\kappa(x,\{y: u(y,t) \ge u(x,t)\}) = 0\\ u(0,\cdot) = u_0. \end{cases}$$

Moreover, if κ is "uniformly continuous" with respect to C^2 convergence of sets, then the level set flow is unique, it obeys the comparison principle, and the set flow $t \mapsto \{x : u(x,t) \ge s\}$ depends only on $\{u^0 \ge s\}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Some examples covered by the theory

• Smooth anisotropic curvature flows

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some examples covered by the theory

- Smooth anisotropic curvature flows
- Fractional mean curvature flow: for $\alpha \in (0,1)$ let

$$J^{\alpha}(E) := \int \int_{\mathbb{R}^N \times \mathbb{R}^N} \frac{|\chi_E(x) - \chi_E(y)|}{|x - y|^{N + \alpha}} \, dx dy = [\chi_E]^2_{H^{\frac{\alpha}{2}}}$$

G. Gilboa; S. Osher, Multiscale Model. Simul. (2007)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Some examples covered by the theory

- Smooth anisotropic curvature flows
- Fractional mean curvature flow: for $lpha \in (0,1)$ let

$$J^{\alpha}(E) := \int \int_{\mathbb{R}^N \times \mathbb{R}^N} \frac{|\chi_E(x) - \chi_E(y)|}{|x - y|^{N + \alpha}} \, dx dy = [\chi_E]^2_{H^{\frac{\alpha}{2}}}$$

G. Gilboa; S. Osher, Multiscale Model. Simul. (2007)

Level set approach: Imbert, Interfaces Free Bound. (2009)

Nonlocal threshold dynamics: Caffarelli & Souganidis, ARMA (2010)

Some examples covered by the theory

- Smooth anisotropic curvature flows
- Fractional mean curvature flow: for $lpha \in (0,1)$ let

$$J^{\alpha}(E) := \int \int_{\mathbb{R}^N \times \mathbb{R}^N} \frac{|\chi_E(x) - \chi_E(y)|}{|x - y|^{N + \alpha}} \, dx dy = [\chi_E]^2_{H^{\frac{\alpha}{2}}}$$

G. Gilboa; S. Osher, Multiscale Model. Simul. (2007)

Level set approach: Imbert, Interfaces Free Bound. (2009)

Nonlocal threshold dynamics: Caffarelli & Souganidis, ARMA (2010)

Capacity-generated flows: J(E) := Cap_p(E; ℝ^N), 1
 → Hele-Shaw type flows Cardaliaguet, p = 2

(日)、

-

Some examples covered by the theory

- Smooth anisotropic curvature flows
- Fractional mean curvature flow: for $lpha \in (0,1)$ let

$$J^{\alpha}(E) := \int \int_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \frac{|\chi_{E}(x) - \chi_{E}(y)|}{|x - y|^{N + \alpha}} \, dx dy = [\chi_{E}]^{2}_{H^{\frac{\alpha}{2}}}$$

G. Gilboa; S. Osher, Multiscale Model. Simul. (2007)

Level set approach: Imbert, Interfaces Free Bound. (2009)

Nonlocal threshold dynamics: Caffarelli & Souganidis, ARMA (2010)

- Capacity-generated flows: J(E) := Cap_p(E; ℝ^N), 1
 → Hele-Shaw type flows Cardaliaguet, p = 2
- Minkowski-type flow:

 $J_{\rho}(E) := \mathcal{H}^{N}(\cup_{x \in \partial E} B_{\rho}(x))$

・ロト ・ 雪 ト ・ ヨ ト

-

Some examples covered by the theory

- Smooth anisotropic curvature flows
- Fractional mean curvature flow: for $lpha \in (0,1)$ let

$$J^{\alpha}(E) := \int \int_{\mathbb{R}^N \times \mathbb{R}^N} \frac{|\chi_E(x) - \chi_E(y)|}{|x - y|^{N + \alpha}} \, dx dy = [\chi_E]^2_{H^{\frac{\alpha}{2}}}$$

G. Gilboa; S. Osher, Multiscale Model. Simul. (2007)

Level set approach: Imbert, Interfaces Free Bound. (2009)

Nonlocal threshold dynamics: Caffarelli & Souganidis, ARMA (2010)

- Capacity-generated flows: J(E) := Cap_p(E; ℝ^N), 1
 → Hele-Shaw type flows Cardaliaguet, p = 2
- Minkowski-type flow:

$$J_{\rho}(E) := \mathcal{H}^{N}(\cup_{x \in \partial E} B_{\rho}(x)) \qquad J(E) := \int_{0}^{r} f(\rho) J_{\rho}(E) d\rho$$

Some examples covered by the theory

- Smooth anisotropic curvature flows
- Fractional mean curvature flow: for $lpha \in (0,1)$ let

$$J^{\alpha}(E) := \int \int_{\mathbb{R}^N \times \mathbb{R}^N} \frac{|\chi_E(x) - \chi_E(y)|}{|x - y|^{N + \alpha}} \, dx dy = [\chi_E]^2_{H^{\frac{\alpha}{2}}}$$

G. Gilboa; S. Osher, Multiscale Model. Simul. (2007)

Level set approach: Imbert, Interfaces Free Bound. (2009)

Nonlocal threshold dynamics: Caffarelli & Souganidis, ARMA (2010)

- Capacity-generated flows: J(E) := Cap_p(E; ℝ^N), 1
 → Hele-Shaw type flows Cardaliaguet, p = 2
- Minkowski-type flow:

$$J_{\rho}(E) := \mathcal{H}^{N}(\cup_{x \in \partial E} B_{\rho}(x)) \qquad J(E) := \int_{0}^{r} f(\rho) J_{\rho}(E) d\rho$$

Barchiesi, Kang, Lee, Morini, Ponsiglione, Multiscale=Modell Simil: (2010) 📱 🔊 🔍

Limitations of the theory

Consider a norm ϕ and the corresponding anisotropic perimeter

$$P_{\phi}(E) = \int_{\partial E} \phi(\nu^{E}) \, d\mathcal{H}^{d-1}$$

The curvature κ_{ϕ}^{E} is the the first variation of P_{ϕ} . If ϕ is smooth, then $\kappa_{\phi}^{E} = \operatorname{div}_{\tau} (\nabla \phi(\nu^{E}))$

Limitations of the theory

Consider a norm ϕ and the corresponding anisotropic perimeter

$$P_{\phi}(E) = \int_{\partial E} \phi(\nu^{E}) \, d\mathcal{H}^{d-1}$$

The curvature κ_{ϕ}^{E} is the the first variation of P_{ϕ} . If ϕ is smooth, then $\kappa_{\phi}^{E} = \operatorname{div}_{\tau} (\nabla \phi(\nu^{E}))$ We are interested in

$$V = -m(\nu^{E_t})\kappa_{\phi}^{E_t}$$

where the norm m is a mobility

Limitations of the theory

Consider a norm ϕ and the corresponding anisotropic perimeter

$$P_{\phi}(E) = \int_{\partial E} \phi(\nu^{E}) \, d\mathcal{H}^{d-1}$$

The curvature κ_{ϕ}^{E} is the the first variation of P_{ϕ} . If ϕ is smooth, then $\kappa_{\phi}^{E} = \operatorname{div}_{\tau} (\nabla \phi(\nu^{E}))$ We are interested in

$$V = -m(\nu^{E_t})\kappa_{\phi}^{E_t}$$

where the norm m is a mobility

• If ϕ is smooth (and $m(\nu) \equiv 1$) we apply previous theory

Limitations of the theory

Consider a norm ϕ and the corresponding anisotropic perimeter

$$P_{\phi}(E) = \int_{\partial E} \phi(\nu^{E}) \, d\mathcal{H}^{d-1}$$

The curvature κ_{ϕ}^{E} is the the first variation of P_{ϕ} . If ϕ is smooth, then $\kappa_{\phi}^{E} = \operatorname{div}_{\tau} (\nabla \phi(\nu^{E}))$ We are interested in

$$V = -m(\nu^{E_t})\kappa_{\phi}^{E_t}$$

where the norm m is a mobility

- If ϕ is smooth (and $m(\nu)\equiv 1$) we apply previous theory
- If ϕ is non-smooth (e.g. crystalline), then the Cahn-Hoffmann field $\nabla \phi(\nu^E)$ and hence κ_{ϕ}^E are not well defined in a classical way.

Limitations of the theory

Consider a norm ϕ and the corresponding anisotropic perimeter

$$P_{\phi}(E) = \int_{\partial E} \phi(\nu^{E}) \, d\mathcal{H}^{d-1}$$

The curvature κ_{ϕ}^{E} is the the first variation of P_{ϕ} . If ϕ is smooth, then $\kappa_{\phi}^{E} = \operatorname{div}_{\tau} (\nabla \phi(\nu^{E}))$ We are interested in

$$V = -m(\nu^{E_t})\kappa_{\phi}^{E_t}$$

where the norm m is a mobility

- If ϕ is smooth (and $m(\nu)\equiv 1$) we apply previous theory
- If φ is non-smooth (e.g. crystalline), then the Cahn-Hoffmann field ∇φ(ν^E) and hence κ^E_φ are not well defined in a classical way. The previous theory does not apply

Two classical "weak" methods

Nonlocal motions: a unified theory

Crystalline flows: existence and uniqueness

Outline

Two classical ''weak'' methods

Nonlocal motions: a unified theory

Crystalline flows: existence and uniqueness

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The crystalline case

The crystalline case

The unit ball B_{ϕ} The Wulff shape W_{ϕ}

 Lack of differentiability: the Cahn-Hoffmann field ∇φ(ν^E) is not uniquely defined for some directions

The crystalline case

The unit ball B_{ϕ} The Wulff shape W_{ϕ}

- Lack of differentiability: the Cahn-Hoffmann field ∇φ(ν^E) is not uniquely defined for some directions
- look at admissible selections z of $x \mapsto \partial \phi(\nu^{E}(x))$

The crystalline case

The unit ball B_{ϕ} The Wulff shape W_{ϕ}

- Lack of differentiability: the Cahn-Hoffmann field ∇φ(ν^E) is not uniquely defined for some directions
- look at admissible selections z of $x \mapsto \partial \phi(\nu^{E}(x))$
- the crystalline curvature is given by $\operatorname{div}_{\tau} z$, where $\operatorname{div}_{\tau} z$ has minimal L^2 -norm among all admissible fields

The crystalline case

The unit ball B_{ϕ} The Wulff shape W_{ϕ}

- Lack of differentiability: the Cahn-Hoffmann field ∇φ(ν^E) is not uniquely defined for some directions
- look at admissible selections z of $x \mapsto \partial \phi(\nu^{E}(x))$
- the crystalline curvature is given by $\operatorname{div}_{\tau} z$, where $\operatorname{div}_{\tau} z$ has minimal L^2 -norm among all admissible fields
- The curvature becomes nonlocal!

Crystalline flows: existence and uniqueness

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Known results

• The case *d* = 2: settled by Giga & Giga (2001), by developing a "crystalline" viscosity approach

Known results

- The case *d* = 2: settled by Giga & Giga (2001), by developing a "crystalline" viscosity approach
- The case *d* ≥ 3: investigated by many authors, only partial results were available prior to ours:
 - Convex initial data: Bellettini, Caselles, Chambolle & Novaga (2008)
 - Polyhedral initial data: Giga, Gurtin & Matias (1998)
 - the well-posedness and the validity of a comparison principle in the general case has been a long-standing open problem as well as the uniqueness of the crystalline flat flow

Recent developments

Chambolle-M.-Ponsiglione 2016

Let ϕ be any (possibly crystalline) anisotropy. Then, the anisotropic mean curvature equation

 $V = -\phi(\nu) \, \kappa_{\phi}$

admits a weak formulation that yields global existence and a comparison principle in all dimensions and for arbitrary (possibly unbounded) initial sets

Recent developments

Chambolle-M.-Ponsiglione 2016

Let ϕ be any (possibly crystalline) anisotropy. Then, the anisotropic mean curvature equation

 $V = -\phi(\nu) \, \kappa_{\phi}$

admits a weak formulation that yields global existence and a comparison principle in all dimensions and for arbitrary (possibly unbounded) initial sets

• The result holds for the "natural" mobility $m=\phi$

・ロト・日本・モト・モート ヨー うへぐ

Soner's distance formulation: heuristics

Let $t \mapsto E(t)$ be a smooth flow and assume ϕ to be smooth.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Soner's distance formulation: heuristics

Let $t \mapsto E(t)$ be a smooth flow and assume ϕ to be smooth.

Set d(·, t) := dist^{φ°}(·, E(t)), where dist^{φ°} is the distance induced by φ°.

Soner's distance formulation: heuristics

Let $t \mapsto E(t)$ be a smooth flow and assume ϕ to be smooth.

Set d(·, t) := dist^{φ°}(·, E(t)), where dist^{φ°} is the distance induced by φ°. Then ∂_td = −V/φ(ν^{E(t)}) on ∂E(t).

Soner's distance formulation: heuristics

Let $t \mapsto E(t)$ be a smooth flow and assume ϕ to be smooth.

Set d(·, t) := dist^{φ°}(·, E(t)), where dist^{φ°} is the distance induced by φ°. Then ∂_td = −V/φ(ν^{E(t)}) on ∂E(t). Thus, V = −φ(ν)κ_φ reads

 $\partial_t d = \operatorname{div}(\nabla \phi(\nabla d))$ on $\partial E(t) = \partial \{d(\cdot, t) = 0\}.$

Soner's distance formulation: heuristics

Let $t \mapsto E(t)$ be a smooth flow and assume ϕ to be smooth.

Set d(·, t) := dist^{φ°}(·, E(t)), where dist^{φ°} is the distance induced by φ°. Then ∂_td = −V/φ(ν^{E(t)}) on ∂E(t). Thus, V = −φ(ν)κ_φ reads

 $\partial_t d = \operatorname{div}(\nabla \phi(\nabla d))$ on $\partial E(t) = \partial \{d(\cdot, t) = 0\}.$

• Since the curvatures of the *s*-level sets of *d* are non-increasing in *s*, we have

 $\partial_t d \ge \operatorname{div}(\nabla \phi(\nabla d)) \quad \text{in } \{d > 0\}.$

Soner's distance formulation: heuristics

Let $t \mapsto E(t)$ be a smooth flow and assume ϕ to be smooth.

Set d(·, t) := dist^{φ°}(·, E(t)), where dist^{φ°} is the distance induced by φ°. Then ∂_td = −V/φ(ν^{E(t)}) on ∂E(t). Thus, V = −φ(ν)κ_φ reads

 $\partial_t d = \operatorname{div}(\nabla \phi(\nabla d))$ on $\partial E(t) = \partial \{ d(\cdot, t) = 0 \}.$

• Since the curvatures of the *s*-level sets of *d* are non-increasing in *s*, we have

 $\partial_t d \ge \operatorname{div}(\nabla \phi(\nabla d)) \quad \text{in } \{d > 0\}.$

• Analogously, setting $d^{c}(\cdot, t) := dist(\cdot, E^{c}(t))$, we have

 $\partial_t d^c \ge \operatorname{div}(\nabla \phi(\nabla d^c)) \quad \text{in } \{d^c > 0\}.$

Our new weak formulation of $V = -\phi(\nu) \kappa_{\phi}$

Definition

Let $E := (E(t))_{t \ge 0} \subseteq \mathbb{R}^{\mathbb{N}} \times [0, +\infty)$ be a closed tube. We say that E is a weak superflow if

Our new weak formulation of $V = -\phi(\nu) \kappa_{\phi}$

Definition

Let $E := (E(t))_{t \ge 0} \subseteq \mathbb{R}^{\mathbb{N}} \times [0, +\infty)$ be a closed tube. We say that E is a weak superflow if

(a) $E(s) \xrightarrow{\mathcal{K}} E(t)$ as $s \nearrow t$ for all t > 0 (left-continuity);
Our new weak formulation of $V = -\phi(\nu) \kappa_{\phi}$

Definition

Let $E := (E(t))_{t \ge 0} \subseteq \mathbb{R}^{\mathbb{N}} \times [0, +\infty)$ be a closed tube. We say that E is a weak superflow if

(a) $E(s) \xrightarrow{\mathcal{K}} E(t)$ as $s \nearrow t$ for all t > 0 (left-continuity);

(b) For all $t \ge 0$ if $E(t) = \emptyset$, then $E(s) = \emptyset$ for all s > t;

Our new weak formulation of $V = -\phi(\nu) \kappa_{\phi}$

Definition

Let $E := (E(t))_{t \ge 0} \subseteq \mathbb{R}^{\mathbb{N}} \times [0, +\infty)$ be a closed tube. We say that E is a weak superflow if

(a) $E(s) \xrightarrow{\mathcal{K}} E(t)$ as $s \nearrow t$ for all t > 0 (left-continuity);

(b) For all $t \ge 0$ if $E(t) = \emptyset$, then $E(s) = \emptyset$ for all s > t;

(c) setting $d(x, t) := dist^{\phi^{\circ}}(x, E(t))$, then

 $\partial_t d \geq \operatorname{div} z$ in $\mathbb{R}^N \times (0, T^*) \setminus E$

in the distributional sense for a suitable z s.t. $z \in \partial \phi(\nabla d)$ a.e

Our new weak formulation of $V = -\phi(\nu) \kappa_{\phi}$

Definition

Let $E := (E(t))_{t \ge 0} \subseteq \mathbb{R}^{\mathbb{N}} \times [0, +\infty)$ be a closed tube. We say that E is a weak superflow if

(a) $E(s) \xrightarrow{\mathcal{K}} E(t)$ as $s \nearrow t$ for all t > 0 (left-continuity);

(b) For all $t \ge 0$ if $E(t) = \emptyset$, then $E(s) = \emptyset$ for all s > t;

(c) setting $d(x, t) := \text{dist}^{\phi^{\circ}}(x, E(t))$, then

 $\partial_t d \geq \operatorname{div} z$ in $\mathbb{R}^N \times (0, T^*) \setminus E$

in the distributional sense for a suitable z s.t. $z \in \partial \phi(\nabla d)$ a.e and $(\operatorname{div} z)^+ \in L^{\infty}(\{d \geq \delta\})$ for every $\delta > 0$. Our new weak formulation of $V = -\phi(\nu) \kappa_{\phi}$

Definition

Let $E := (E(t))_{t \ge 0} \subseteq \mathbb{R}^{\mathbb{N}} \times [0, +\infty)$ be a closed tube. We say that E is a weak superflow if

(a) $E(s) \xrightarrow{\mathcal{K}} E(t)$ as $s \nearrow t$ for all t > 0 (left-continuity);

(b) For all $t \ge 0$ if $E(t) = \emptyset$, then $E(s) = \emptyset$ for all s > t;

(c) setting $d(x, t) := \text{dist}^{\phi^{\circ}}(x, E(t))$, then

 $\partial_t d \geq \operatorname{div} z$ in $\mathbb{R}^N \times (0, T^*) \setminus E$

in the distributional sense for a suitable z s.t. $z \in \partial \phi(\nabla d)$ a.e and $(\operatorname{div} z)^+ \in L^{\infty}(\{d \geq \delta\})$ for every $\delta > 0$.

Let $A := (A(t))_{t \ge 0} \subseteq \mathbb{R}^{\mathbb{N}} \times [0, +\infty)$ be a (relatively) open tube. We say that A is a weak subflow if $\mathbb{R}^{\mathbb{N}} \times [0, +\infty) \setminus A$ is weak superflow.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ��や

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Our new weak formulation of $V = -\phi(\nu) \kappa_{\phi}$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Our new weak formulation of $V = -\phi(\nu) \kappa_{\phi}$

Definition

Let $E \subseteq \mathbb{R}^{\mathbb{N}} \times [0, +\infty)$ be a closed tube. We say that E is a weak flow or solution if:

(a) E is a weak superflow;
(b) A := Int E is a weak subflow;

(c) $E = \operatorname{cl} A$.

Our new weak formulation of $V = -\phi(\nu) \kappa_{\phi}$

Definition

Let $E \subseteq \mathbb{R}^{\mathbb{N}} \times [0, +\infty)$ be a closed tube. We say that E is a weak flow or solution if:

- (a) *E* is a weak superflow;
- (b) A := Int E is a weak subflow;

(c) $E = \operatorname{cl} A$.

Comparison Principle: exploits the distributional formulation

Our new weak formulation of $V = -\phi(\nu) \kappa_{\phi}$

Definition

Let $E \subseteq \mathbb{R}^{\mathbb{N}} \times [0, +\infty)$ be a closed tube. We say that E is a weak flow or solution if:

- (a) *E* is a weak superflow;
 (b) *A* := Int *E* is a weak subflow;
 (c) *E* = cl *A*.
 - Comparison Principle: exploits the distributional formulation
 - Existence: via minimizing movements

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Comparison

Let $E(0) \subset A(0)$ and let $\Delta > 0$ be the distance of their boundaries. Let E be a weak superflow, and A a weak subflow. Claim: We want to prove that $\Delta(t) \ge \Delta$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Comparison

Let $E(0) \subset A(0)$ and let $\Delta > 0$ be the distance of their boundaries. Let E be a weak superflow, and A a weak subflow. Claim: We want to prove that $\Delta(t) \ge \Delta$

Parabolic maximum principle: In a strip $S \subset A \setminus E$, we want to prove that $\Delta(t) \geq \Delta$ (at least for short time). Distances are "rigid": $\Delta(t) \geq \Delta$ everywhere Iteration: $\Delta(t) \geq \Delta$ for all times (before T^*).

Existence and uniqueness for $V=-\phi(
u)\,\kappa_{\phi}$

Theorem (Chambolle-M.-Ponsiglione, CPAM 2016)

Let ϕ be any anisotropy and u^0 be a uniformly continuous function in \mathbb{R}^N . Then, for all but countably many $s \in \mathbb{R}$ the minimizing movements scheme starting from $E_s^0 := \{u^0 \ge s\}$ converge to the unique weak solution E_s of $V = -\phi(\nu) \kappa_{\phi}$, with initial datum E_s^0 .

Existence and uniqueness for $V=-\phi(
u)\,\kappa_{\phi}$

Theorem (Chambolle-M.-Ponsiglione, CPAM 2016)

Let ϕ be any anisotropy and u^0 be a uniformly continuous function in \mathbb{R}^N . Then, for all but countably many $s \in \mathbb{R}$ the minimizing movements scheme starting from $E_s^0 := \{u^0 \ge s\}$ converge to the unique weak solution E_s of $V = -\phi(\nu) \kappa_{\phi}$, with initial datum E_s^0 .

• Generic existence and uniqueness; the bad (countable) set is the set of levels for which fattening occurs.

Existence and uniqueness for $V=-\phi(
u)\,\kappa_{\phi}$

Theorem (Chambolle-M.-Ponsiglione, CPAM 2016)

Let ϕ be any anisotropy and u^0 be a uniformly continuous function in \mathbb{R}^N . Then, for all but countably many $s \in \mathbb{R}$ the minimizing movements scheme starting from $E_s^0 := \{u^0 \ge s\}$ converge to the unique weak solution E_s of $V = -\phi(\nu) \kappa_{\phi}$, with initial datum E_s^0 .

- Generic existence and uniqueness; the bad (countable) set is the set of levels for which fattening occurs.
- Uniqueness of the level set flow.

Existence and uniqueness for $V=-\phi(
u)\,\kappa_{\phi}$

Theorem (Chambolle-M.-Ponsiglione, CPAM 2016)

Let ϕ be any anisotropy and u^0 be a uniformly continuous function in \mathbb{R}^N . Then, for all but countably many $s \in \mathbb{R}$ the minimizing movements scheme starting from $E_s^0 := \{u^0 \ge s\}$ converge to the unique weak solution E_s of $V = -\phi(\nu) \kappa_{\phi}$, with initial datum E_s^0 .

- Generic existence and uniqueness; the bad (countable) set is the set of levels for which fattening occurs.
- Uniqueness of the level set flow.

After our preprint appeared, Giga-Pozar (preprint 2016): viscosity approach in three-dimensions for

$$V=-m(\nu)(\kappa_{\phi}+1),$$

for bounded initial sets and when ϕ is purely crystalline.

ϕ -regular mobilities

Definition (ϕ -regular mobilities)

We say that the mobility m is ϕ -regular if the m-Wulff shape satisfies a uniform inner ϕ -Wulff shape condition.

ϕ -regular mobilities

Definition (ϕ -regular mobilities)

We say that the mobility m is ϕ -regular if the m-Wulff shape satisfies a uniform inner ϕ -Wulff shape condition.

Remark: if ϕ is crystalline, then $m \equiv 1$ is never ϕ -regular

ϕ -regular mobilities

Definition (ϕ -regular mobilities)

We say that the mobility m is ϕ -regular if the m-Wulff shape satisfies a uniform inner ϕ -Wulff shape condition.

Remark: if ϕ is crystalline, then $m \equiv 1$ is never ϕ -regular

Chambolle-M.-Novaga-Ponsiglione, to appear

The techniques of Chambolle-M.-Ponsiglione can be pushed to treat $V = -m(\nu^{E(t)})(\kappa_{\phi}^{E(t)} + g(x, t))$, when m is ϕ -regular and g is bounded forcing term with spatial Lipschitz continuity

ϕ -regular mobilities

Definition (ϕ -regular mobilities)

We say that the mobility m is ϕ -regular if the m-Wulff shape satisfies a uniform inner ϕ -Wulff shape condition.

Remark: if ϕ is crystalline, then $m \equiv 1$ is never ϕ -regular

Chambolle-M.-Novaga-Ponsiglione, to appear

The techniques of Chambolle-M.-Ponsiglione can be pushed to treat $V = -m(\nu^{E(t)})(\kappa_{\phi}^{E(t)} + g(x, t))$, when m is ϕ -regular and g is bounded forcing term with spatial Lipschitz continuity

Note: the equations $V = -\kappa_{\phi}$ or $V = -(\kappa_{\phi} + 1)$, with ϕ crystalline, are not covered

General mobilities

Theorem (Chambolle-M.-Novaga-Ponsiglione, to appear on JAMS) For any ϕ and m there exists a unique level set flow $u^{\phi,m}$ corresponding to $V = -m(\nu)(\kappa_{\phi} + g)$, with initial datum u^0 .

General mobilities

Theorem (Chambolle-M.-Novaga-Ponsiglione, to appear on JAMS) For any ϕ and m there exists a unique level set flow $u^{\phi,m}$ corresponding to $V = -m(\nu)(\kappa_{\phi} + g)$, with initial datum u^0 . Moreover, for all but countably many $s \in \mathbb{R}$, the set flow $t \mapsto \{x : u^{\phi,m}(t,x) \ge s\}$ is the unique limit of the ATW scheme with initial set $\{u^0 \ge s\}$.

General mobilities

Theorem (Chambolle-M.-Novaga-Ponsiglione, to appear on JAMS) For any ϕ and m there exists a unique level set flow $u^{\phi,m}$ corresponding to $V = -m(\nu)(\kappa_{\phi} + g)$, with initial datum u^0 . Moreover, for all but countably many $s \in \mathbb{R}$, the set flow $t \mapsto \{x : u^{\phi,m}(t,x) \ge s\}$ is the unique limit of the ATW scheme with initial set $\{u^0 \ge s\}$. Moreover, the flow obeys the the comparison principle and the set flow $t \mapsto \{x : u^{\phi,m}(t,x) \ge s\}$ depends only on $\{u^0 \ge s\}$.

General mobilities

Theorem (Chambolle-M.-Novaga-Ponsiglione, to appear on JAMS) For any ϕ and m there exists a unique level set flow $u^{\phi,m}$ corresponding to $V = -m(\nu)(\kappa_{\phi} + g)$, with initial datum u^0 . Moreover, for all but countably many $s \in \mathbb{R}$, the set flow $t \mapsto \{x : u^{\phi,m}(t,x) \ge s\}$ is the unique limit of the ATW scheme with initial set $\{u^0 > s\}$. Moreover, the flow obeys the the comparison principle and the set flow $t \mapsto \{x : u^{\phi,m}(t,x) > s\}$ depends only on $\{u^0 \ge s\}$. Finally, if $\phi_n \to \phi$ and $m_n \to m$, then $\mu^{\phi_n,m_n} \rightarrow \mu^{\phi,m}$

General mobilities

Theorem (Chambolle-M.-Novaga-Ponsiglione, to appear on JAMS) For any ϕ and m there exists a unique level set flow $u^{\phi,m}$ corresponding to $V = -m(\nu)(\kappa_{\phi} + g)$, with initial datum u^0 . Moreover, for all but countably many $s \in \mathbb{R}$, the set flow $t \mapsto \{x : u^{\phi,m}(t,x) \ge s\}$ is the unique limit of the ATW scheme with initial set $\{u^0 > s\}$. Moreover, the flow obeys the the comparison principle and the set flow $t \mapsto \{x : u^{\phi,m}(t,x) > s\}$ depends only on $\{u^0 > s\}$. Finally, if $\phi_n \to \phi$ and $m_n \to m$, then $\mu^{\phi_n,m_n} \rightarrow \mu^{\phi,m}$

 Idea: Let m_n → m, where m_n is φ-regular. Then, by delicate stability estimates on the ATW scheme one can show that the corresponding {u^{φ,m_n}} admit a unique limit.

General mobilities

Theorem (Chambolle-M.-Novaga-Ponsiglione, to appear on JAMS) For any ϕ and m there exists a unique level set flow $u^{\phi,m}$ corresponding to $V = -m(\nu)(\kappa_{\phi} + g)$, with initial datum u^0 . Moreover, for all but countably many $s \in \mathbb{R}$, the set flow $t \mapsto \{x : u^{\phi,m}(t,x) \ge s\}$ is the unique limit of the ATW scheme with initial set $\{u^0 \ge s\}$. Moreover, the flow obeys the the comparison principle and the set flow $t \mapsto \{x : u^{\phi,m}(t,x) \ge s\}$ depends only on $\{u^0 \ge s\}$. Finally, if $\phi_n \to \phi$ and $m_n \to m$, then $\mu^{\phi_n,m_n} \rightarrow \mu^{\phi,m}$

- Idea: Let m_n → m, where m_n is φ-regular. Then, by delicate stability estimates on the ATW scheme one can show that the corresponding {u^{φ,m_n}} admit a unique limit.
- The long-standing problem of the well-posedness of crystalline flows and of the uniqueness of crystalline flat flows is settled.

Giga & Pozar again

Shortly after, Giga & Pozar (to appear on CPAM) : crystalline viscosity approach in *N*-dimensions for

$$V = -m(\nu^{E(t)})(\kappa_{\phi}^{E(t)}+1)$$

Giga & Pozar again

Shortly after, Giga & Pozar (to appear on CPAM) : crystalline viscosity approach in *N*-dimensions for

$$V = -m(\nu^{E(t)})(\kappa_{\phi}^{E(t)}+1)$$

Disadvantages of the crystalline viscosity approach:

- ϕ must be purely crystalline, g constant, and the initial set bounded;

Giga & Pozar again

Shortly after, Giga & Pozar (to appear on CPAM) : crystalline viscosity approach in *N*-dimensions for

$$V = -m(\nu^{E(t)})(\kappa_{\phi}^{E(t)}+1)$$

Disadvantages of the crystalline viscosity approach:

- ϕ must be purely crystalline, g constant, and the initial set bounded;
- the method does not say anything about flat flows.

Giga & Pozar again

Shortly after, Giga & Pozar (to appear on CPAM) : crystalline viscosity approach in *N*-dimensions for

$$V = -m(\nu^{E(t)})(\kappa_{\phi}^{E(t)}+1)$$

Disadvantages of the crystalline viscosity approach:

- ϕ must be purely crystalline, g constant, and the initial set bounded;
- the method does not say anything about flat flows.

Advantages of the crystalline viscosity approach:

- it covers non-variational equations of the form $V = f(\kappa_{\phi})$.

Giga & Pozar again

Shortly after, Giga & Pozar (to appear on CPAM) : crystalline viscosity approach in *N*-dimensions for

$$V = -m(\nu^{E(t)})(\kappa_{\phi}^{E(t)}+1)$$

Disadvantages of the crystalline viscosity approach:

- ϕ must be purely crystalline, g constant, and the initial set bounded;
- the method does not say anything about flat flows.

Advantages of the crystalline viscosity approach:

- it covers non-variational equations of the form $V = f(\kappa_{\phi})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conclusions

• Unifying approach to deal with a general class of nonlocal curvature flows

- Unifying approach to deal with a general class of nonlocal curvature flows
- The variational point of view highlights the crucial role of convexity (submodularity)

- Unifying approach to deal with a general class of nonlocal curvature flows
- The variational point of view highlights the crucial role of convexity (submodularity)
- General consistency result between viscosity solutions and minimizing movements

- Unifying approach to deal with a general class of nonlocal curvature flows
- The variational point of view highlights the crucial role of convexity (submodularity)
- General consistency result between viscosity solutions and minimizing movements
- The general theory does not apply to the crystalline mean curvature flow

- Unifying approach to deal with a general class of nonlocal curvature flows
- The variational point of view highlights the crucial role of convexity (submodularity)
- General consistency result between viscosity solutions and minimizing movements
- The general theory does not apply to the crystalline mean curvature flow
- New recent approach: provides the first general well-posedness result for crystalline mean curvature flows valid in any dimension and for arbitrary initial sets

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thank you for your attention!