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Introduction Equation

Equations

Goal: Asymptotic behavior as t →∞ of solutions for random data to the
nonlinear Schrödinger equation:

(NLS) i u̇ + ∆u = −|u|pu, u(t, x) : R1+d → C (p > 0, d ∈ N),

for which the most basic class of solutions is L2(Rd) in space:

‖u(t)‖2
L2(Rd ) =

∫
Rd

|u(t, x)|2dx =

∫
R2

|u(0, x)|2dx <∞,

or slightly more concrete models, such as the nonlinear Schrödinger system

(NSS)


i u̇1 + ∆u1 = u2u3,

i u̇2 + ∆u2 = u1u3,

i u̇3 + ∆u3 = u1u2,

u(t, x) : R1+3 → C3,

where u1, u2, u3 describe the laser incident wave, the scattered wave, and
the plasma electric field, respectively, in the Raman scattering.
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Introduction Equation

Equations

Another case is also the (defocusing) NLS

(GP) i u̇ + ∆u = |u|2u, u(t, x) : R1+3 → C,

but with a non-zero background or boundary condition at |x | → ∞, which
is more suitable in superfluid, nonlinear optics, etc.

More precisely, we consider disturbance from a plane wave solution:

u(t, x) = ae iωt+iξx(1 + v(t, x)), a + ω = −|ξ|2,

with some parameters a > 0 > ω and ξ ∈ R3, and v decaying as |x | → ∞.
Using the invariance of equation, we can reduce it to the simplest case:

u(t, x) = e−it(1 + v(t, x)).

We call the equation in this setting the Gross-Pitaevskii.
Note: |u|2u contains O(v2), quadratic interactions on R3.
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Introduction Scattering problem

Scattering problem: nonlinearity v.s. dispersion

The (nonlinear) scattering theory aims at approximating a nonlinear
solution u with interactions, e.g., for (NLS)

i u̇ + ∆u = −|u|pu, u(t, x) : R1+d → C,

as t →∞ by a solution v without interaction to the ‘free’ equation:

i v̇ + ∆v = 0, v(t, x) : R1+d → C,

anticipating that the dispersion forces the wave to spread (|x | → ∞), so
nonlinear interactions (|u|pu) have essential effect within finite time only.

The most basic approximation is in L2(Rd), namely

‖u(t)− v(t)‖L2(Rd ) → 0 (t →∞).

Then, writing v(t) = e it∆ϕ+ with the unitary group (i.e. ϕ+ ∈ L2(Rd) is
the initial data for v), we call ϕ+ the final data for u.

Kenji Nakanishi (RIMS) Randomized final data problem for NLS January 26, 2019 4 / 14



Introduction Scattering problem

Scattering problem: nonlinearity v.s. dispersion

The (nonlinear) scattering theory aims at approximating a nonlinear
solution u with interactions, e.g., for (NLS)

i u̇ + ∆u = −|u|pu, u(t, x) : R1+d → C,

as t →∞ by a solution v without interaction to the ‘free’ equation:

i v̇ + ∆v = 0, v(t, x) : R1+d → C,

anticipating that the dispersion forces the wave to spread (|x | → ∞), so
nonlinear interactions (|u|pu) have essential effect within finite time only.
The most basic approximation is in L2(Rd), namely

‖u(t)− v(t)‖L2(Rd ) → 0 (t →∞).

Then, writing v(t) = e it∆ϕ+ with the unitary group (i.e. ϕ+ ∈ L2(Rd) is
the initial data for v), we call ϕ+ the final data for u.

Kenji Nakanishi (RIMS) Randomized final data problem for NLS January 26, 2019 4 / 14



Introduction Scattering problem

Scattering problem

The fundamental questions in the scattering problem are

1 Existence: ∀ϕ+:final data, ∃u: nonlinear (global) solution?

2 Uniqueness: ϕ+ 7→ u?

3 Completeness: ∀u, ∃ϕ+?

In the case of (NLS) with ϕ+ in L2(Rd), we know

1 Existence: Yes, if d ≥ 3 and 2/d < p < 4/d . (N. ’00)

2 Uniqueness: An open problem.

3 Completeness: No, there are solitons u(t, x) = e itω+iξxϕ(x − ct).

There are many results for more restricted ϕ+, u, e.g., if |x |sϕ+ ∈ L2(Rd)
with some s ≥ 2/p − d/2, then the unique existence, as well as the
completeness for small u (Ginibre-Ozawa-Velo ’94, N.-Ozawa ’02).
For p = 2/d , the asymptotics need nonlinear modification (Ozawa ’91).
For 4/d ≤ p ≤ 4/(d − 2), blow-up occurs backward in time for some
solutions asymptotically free near t =∞ (cf. N.-Schlag ’12).
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Introduction Supercritical problem

Why is the uniqueness difficult? It is supercritical.

Scattering means that the nonlinear interactions are small perturbation
from the linear equation for t →∞. So, when it works well, the problem
should be easier for smaller ϕ+ and u, as well as for larger t.

The scaling invariance of (NLS) shows that it is not the case for p < 4/d :

u(t, x) : (NLS) =⇒ ∀λ > 0, uλ(t, x) := λ2/pu(λ2t, λx) : (NLS),

‖uλ(0)‖L2(Rd ) = λ2/p−d/2‖u(0)‖L2(Rd ) → 0 (λ→ +0).

By the scaling, the scattering problem under the restrictions

‖ϕ+‖L2 ≤ ε, ‖u(0)‖L2 ≤ ε, t ≥ 1/ε

is equivalent (for any ε > 0) to that with

‖ϕ+‖L2 ≤ 1, ‖u(0)‖L2 ≤ 1, t ≥ 1.

Hence neither the smallness of ϕ+ and u(0) nor largeness of t helps.
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Randomization Supercriticality v.s. Randomization

Supercriticality v.s. Randomization

Randomizing the data can break the supercriticality.
Burq-Tzvetkov (’08) considered the (rough) initial data problem for the
nonlinear wave equation:

(NLW) ü −∆u = −u3, u(t, x) : R×M → R,

on 3D closed Riemannian manifold M.

The scaling on R3 suggests

(u(0), u̇(0)) = (f1, f2) ∈ Hs(M)× Hs−1(M) : Sobolev space

is a supercritical setting if s < 1/2. Randomizing the initial data

Hs × Hs−1 3 (f1, f2) 7→ (f ω1 , f
ω

2 ) ∈ L2(Ω;Hs × Hs−1),

(u(0), u̇(0)) = (f ω1 , f
ω

2 ),

in a probability space Ω, however, they proved unique existence of local
solutions for almost every ω ∈ Ω for s ≥ 1/4.
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Randomization Randomization for scattering

Randomization for scattering

Recently, Murphy (’17 arxiv) employed the idea to tackle the supercritical
scattering problem, namely p < 4/d and ϕ+ ∈ L2(Rd) for (NLS)

i u̇ −∆u = |u|pu u(t, x) : R1+d → C.

∀d ∈ N, ∃p0(d) ∈ (2/d , 4/d), ∀p ∈ (p0(d), 4/d), ∀ϕ+ ∈ L2(Rd), almost
every ω ∈ Ω, ∃!u: sol. of (NLS) (in a certain function space), s.t.

‖u(t)− e it∆ϕω+‖L2(Rd ) → 0 (t →∞).

Here p0(d) is called the Strauss exponent for (NLS):

p0(d) =

√
d2 + 12d + 4− d + 2

2d
,

p0(1) = 2.56..., p0(2) =
√

2, p0(3) = 1, p0(4) = 0.78...

Quadratic nonlinearity on R3 is excluded.
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Randomization How the randomization works?

How the randomization works?

Murphy defined the randomization L2(Rd)× Ω 3 (ϕ, ω) 7→ ϕω as follows.
Let {gk(ω)}k∈Zd be i.i.d. mean-0 Gaussian random variables, and
χ ∈ C∞c (Rd) s.t.

0 ≤ χ,
∑
k∈Zd

χ(x − k) = 1.

Then ϕω is given by

ϕω(x) :=
∑
k∈Zd

gk(ω)ϕk(x), ϕk(x) := χ(x − k)ϕ(x).

Note that each ϕk is compactly supported (localized) around k ∈ Zd .

Lührmann-Mendelson (’14) considered the above form of randomization in
the Fourier transform, for the initial data problem of (NLW) on R3.
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Randomization How the randomization works?

How the randomization works?

Each localized piece ϕk ∈ L1(Rd) enjoys much better dispersion, e.g.,

‖e it∆ϕk‖L∞(Rd ) . |t|−d/2‖ϕk‖L1(Rd ),

than the original ϕ ∈ L2(Rd).

Randomization reduces interactions among
them in average, through (Burq-Tzvetkov)

2 ≤ ∀α <∞, ∀c ∈ `2(Zd), ‖
∑

k
gk(ω)ck‖Lα(Ω) .

√
α‖c‖`2(Zd ).

In particular, the Strichartz estimate gains more integrability (Murphy):

‖e it∆ϕω‖LαωLqt Lrx (Ω×(1,∞)×Rd ) .
√
α‖ϕ‖L2(Rd ),

1

q
>

d

2
− d

r
, 2 ≤ q, r ≤ α <∞.

The deterministic case (w/o ω) is only for 2
q = d

2 −
d
r , 2 ≤ q, r ≤ ∞.
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The main result

Main result

We extend Murphy’s result to lower powers p.

Theorem (N.-Yamamoto ’18)

∀d ∈ N, ∃p1(d) ∈ (2/d , p0(d)), ∀p ∈ (p1(d), 4/d), ∀ϕ ∈ L2(Rd), almost
every ω ∈ Ω, ∃!u: sol. of (NLS) (in another function space), s.t.
‖u(t)− e it∆ϕω+‖L2(Rd ) → 0 as t →∞.

In particular, since p1(3) < 1, we can treat quadratic interactions in R3,
such as (NSS), as well as (GP).

p1(d) =

√
d2 + 24d + 16− d + 4

4d
, p0(d) =

√
d2 + 12d + 4− d + 2

2d
,

p1(1) = 2.35..., p1(2) = 1.28..., p1(3) = 0.90..., p1(4) = 0.70...,

p0(1) = 2.56..., p0(2) = 1.41..., p0(3) = 1, p0(4) = 0.78...
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The main result

Critical exponents: Scaling and Dispersion

(NLS) is invariant for the scaling

u(t, x) 7→ uλ(t, x) = λ2/pu(λ2t, λx) (λ > 0),

‖uλ(0)‖Lqx (Rd ) = ‖u(0)‖Lqx (Rd ) ⇐⇒ q = dp/2.

Dispersive estimate for the free Schrödinger evolution is

v(t) = e it∆ϕ, 1 ≤ r ≤ 2 =⇒ ‖v(t)‖Lr∗x (Rd ) . |t|
− d

2
+ d

r ‖ϕ‖Lrx (Rd ).

The four critical exponents are characterized by
1 Fujita exponent: p = 2/d ⇐⇒ q = 1.
2 mass-critical exponent: p = 4/d ⇐⇒ q = 2.
3 Strauss exponent: p = p0(d) ⇐⇒ q = (p + 2)∗. For t > 0,

ϕ ∈ L
(p+2)∗
x =⇒ v(t) ∈ Lp+2

x =⇒ |v(t)|pv(t) ∈ L
(p+2)∗
x .

4 Our exponent: p = p1(d) ⇐⇒ q = (2p + 2)∗. For t > 0,

ϕ ∈ L
(2p+2)∗
x =⇒ v(t) ∈ L2p+2

x =⇒ |v(t)|pv(t) ∈ L2
x .
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The main result

The result for (GP): Randomized in the energy space

Around the plane waves, the (renormalized) L2 is no longer positive, but

u = e−it(1 + v), E (u) :=

∫
R3

|∇u|2

2
+

(|u|2 − 1)2

4
dx> 0.

We need a C-linearization to get a ‘free’ unitary group:

w :=
√

2−∆Re v + i
√
−∆ Im v , E (u) ≈ ‖w‖2

L2(R2).

Then, ∀ϕ ∈ L2(R3), a.s.ω ∈ Ω, ∃!u: sol. of (GP) s.t.,

‖w(t)− e i
√
−∆(2−∆)tϕω+‖L2 → 0 (t →∞).

In the deterministic case, the existence is by Gustafson-N.-Tsai (’09), but
we need in general a quadratic correction term in the asymptotic formula.
For ϕω+ we do not need it, because ϕω+ ∈ Ḣs(Rd) a.s., for s > −3/2.
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Open problem

Open problem: Global dynamics from Random initail data

Consider the randomized initial data problem for (NLS)

i u̇ + ∆u = −|u|pu, u(t, x) : R1+d → C (d ∈ N, 2/d < p < 4/d),

u(0, x) = ϕω(x), (ϕ ∈ L2(Rd), ω ∈ Ω).

Since ϕω ∈ L2(Rd) a.s., we have a global solution u ∈ C (R; L2(Rd))
(Tsutsumi ’87). What is its asymptotic behavior as t →∞?

Randomized soliton resolution conjecture

For almost every ω ∈ Ω, there is a sequence of solitons (maybe infinite)
uj(t, x) = e itωj+ixξjϕj(x − cj t) and ϕ+ ∈ L2(Rd) such that

‖u(t)−
∑

j
uj(t)− e it∆ϕ+‖L2(Rd ) → 0 (t →∞).
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