Randomized final data problem for the nonlinear Schrödinger and the Gross-Pitaevskii equations

Kenji Nakanishi

Research Institute for Mathematical Sciences Kyoto University

January 26, 2019

(joint work with Takuto Yamamoto)

<u>Goal</u>: Asymptotic behavior as $t \to \infty$ of solutions for random data to the nonlinear Schrödinger equation:

$$(\mathsf{NLS}) \quad i\dot{u} + \Delta u = -|u|^p u, \quad u(t,x) : \mathbb{R}^{1+d} \to \mathbb{C} \quad (p > 0, \ d \in \mathbb{N}),$$

<u>Goal</u>: Asymptotic behavior as $t \to \infty$ of solutions for random data to the nonlinear Schrödinger equation:

$$(\mathsf{NLS})$$
 $i\dot{u} + \Delta u = -|u|^p u, \quad u(t,x): \mathbb{R}^{1+d} \to \mathbb{C} \quad (p > 0, \ d \in \mathbb{N}),$

for which the most basic class of solutions is $L^2(\mathbb{R}^d)$ in space:

$$\|u(t)\|_{L^{2}(\mathbb{R}^{d})}^{2} = \int_{\mathbb{R}^{d}} |u(t,x)|^{2} dx = \int_{\mathbb{R}^{2}} |u(0,x)|^{2} dx < \infty,$$

<u>Goal</u>: Asymptotic behavior as $t \to \infty$ of solutions for random data to the nonlinear Schrödinger equation:

$$(\mathsf{NLS})$$
 $i\dot{u} + \Delta u = -|u|^p u, \quad u(t,x): \mathbb{R}^{1+d} \to \mathbb{C} \quad (p > 0, \ d \in \mathbb{N}),$

for which the most basic class of solutions is $L^2(\mathbb{R}^d)$ in space:

$$\|u(t)\|_{L^{2}(\mathbb{R}^{d})}^{2} = \int_{\mathbb{R}^{d}} |u(t,x)|^{2} dx = \int_{\mathbb{R}^{2}} |u(0,x)|^{2} dx < \infty,$$

or slightly more concrete models, such as the nonlinear Schrödinger system

(NSS)
$$\begin{cases} i\dot{u}_1 + \Delta u_1 = \overline{u_2}u_3, \\ i\dot{u}_2 + \Delta u_2 = \overline{u_1}u_3, \\ i\dot{u}_3 + \Delta u_3 = u_1u_2, \end{cases} \quad u(t,x) : \mathbb{R}^{1+3} \to \mathbb{C}^3,$$

where u_1, u_2, u_3 describe the laser incident wave, the scattered wave, and the plasma electric field, respectively, in the Raman scattering.

Kenji Nakanishi (RIMS)

Randomized final data problem for NLS

January 26, 2019 2 / 14

Another case is also the (defocusing) NLS

$$(\mathsf{GP}) \quad i\dot{u} + \Delta u = |u|^2 u, \quad u(t,x): \mathbb{R}^{1+3} \to \mathbb{C},$$

but with a non-zero background or boundary condition at $|x| \rightarrow \infty$, which is more suitable in superfluid, nonlinear optics, etc.

Another case is also the (defocusing) NLS

$$(\mathsf{GP}) \quad i\dot{u} + \Delta u = |u|^2 u, \quad u(t,x): \mathbb{R}^{1+3} \to \mathbb{C},$$

but with a non-zero background or boundary condition at $|x| \to \infty$, which is more suitable in superfluid, nonlinear optics, etc. More precisely, we consider disturbance from a plane wave solution:

$$u(t,x) = ae^{i\omega t + i\xi x}(1 + v(t,x)), \quad a + \omega = -|\xi|^2,$$

with some parameters $a > 0 > \omega$ and $\xi \in \mathbb{R}^3$, and v decaying as $|x| \to \infty$.

Another case is also the (defocusing) NLS

$$(\mathsf{GP}) \quad i\dot{u} + \Delta u = |u|^2 u, \quad u(t,x): \mathbb{R}^{1+3} \to \mathbb{C},$$

but with a non-zero background or boundary condition at $|x| \rightarrow \infty$, which is more suitable in superfluid, nonlinear optics, etc. More precisely, we consider disturbance from a plane wave solution:

$$u(t,x) = ae^{i\omega t + i\xi x}(1 + v(t,x)), \quad a + \omega = -|\xi|^2,$$

with some parameters $a > 0 > \omega$ and $\xi \in \mathbb{R}^3$, and v decaying as $|x| \to \infty$. Using the invariance of equation, we can reduce it to the simplest case:

$$u(t,x) = e^{-it}(1 + v(t,x)).$$

We call the equation in this setting the Gross-Pitaevskii. Note: $|u|^2 u$ contains $O(v^2)$, quadratic interactions on \mathbb{R}^3 .

Kenji Nakanishi (RIMS)

Scattering problem: nonlinearity v.s. dispersion

The (nonlinear) scattering theory aims at approximating a nonlinear solution u with interactions, e.g., for (**NLS**)

$$i\dot{u} + \Delta u = -|u|^{p}u, \quad u(t,x): \mathbb{R}^{1+d} \to \mathbb{C},$$

as $t \to \infty$ by a solution v without interaction to the 'free' equation:

$$i\dot{v} + \Delta v = 0, \quad v(t,x) : \mathbb{R}^{1+d} \to \mathbb{C},$$

anticipating that the dispersion forces the wave to spread $(|x| \rightarrow \infty)$, so nonlinear interactions $(|u|^{p}u)$ have essential effect within finite time only.

Scattering problem: nonlinearity v.s. dispersion

The (nonlinear) scattering theory aims at approximating a nonlinear solution u with interactions, e.g., for (**NLS**)

$$i\dot{u} + \Delta u = -|u|^{p}u, \quad u(t,x): \mathbb{R}^{1+d} \to \mathbb{C},$$

as $t \to \infty$ by a solution v without interaction to the 'free' equation:

$$i\dot{v} + \Delta v = 0, \quad v(t, x) : \mathbb{R}^{1+d} \to \mathbb{C},$$

anticipating that the dispersion forces the wave to spread $(|x| \to \infty)$, so nonlinear interactions $(|u|^{p}u)$ have essential effect within finite time only. The most basic approximation is in $L^{2}(\mathbb{R}^{d})$, namely

$$\|u(t)-v(t)\|_{L^2(\mathbb{R}^d)} \to 0 \quad (t\to\infty).$$

Then, writing $v(t) = e^{it\Delta}\varphi_+$ with the unitary group (i.e. $\varphi_+ \in L^2(\mathbb{R}^d)$ is the initial data for v), we call φ_+ the final data for u.

The fundamental questions in the scattering problem are

- **Q** Existence: $\forall \varphi_+$:final data, $\exists u$: nonlinear (global) solution?
- **2** Uniqueness: $\varphi_+ \mapsto u$?
- **3** Completeness: $\forall u, \exists \varphi_+$?

The fundamental questions in the scattering problem are

- **Q** Existence: $\forall \varphi_+$:final data, $\exists u$: nonlinear (global) solution?
- **2** Uniqueness: $\varphi_+ \mapsto u$?
- **Sompleteness:** $\forall u, \exists \varphi_+$?

In the case of (NLS) with φ_+ in $L^2(\mathbb{R}^d)$, we know

- **(**) Existence: Yes, if $d \ge 3$ and 2/d . (N. '00)
- Oniqueness: An open problem.
- **③** Completeness: No, there are solitons $u(t, x) = e^{it\omega + i\xi x}\varphi(x ct)$.

The fundamental questions in the scattering problem are

- **Q** Existence: $\forall \varphi_+$:final data, $\exists u$: nonlinear (global) solution?
- **2** Uniqueness: $\varphi_+ \mapsto u$?
- **3** Completeness: $\forall u, \exists \varphi_+$?

In the case of (NLS) with φ_+ in $L^2(\mathbb{R}^d)$, we know

- **(**) Existence: Yes, if $d \ge 3$ and 2/d . (N. '00)
- Oliqueness: An open problem.

• Completeness: No, there are solitons $u(t, x) = e^{it\omega + i\xi x}\varphi(x - ct)$. There are many results for more restricted φ_+, u , e.g., if $|x|^s \varphi_+ \in L^2(\mathbb{R}^d)$ with some $s \ge 2/p - d/2$, then the unique existence, as well as the

completeness for small *u* (Ginibre-Ozawa-Velo '94, N.-Ozawa '02).

The fundamental questions in the scattering problem are

- **Q** Existence: $\forall \varphi_+$:final data, $\exists u$: nonlinear (global) solution?
- **2** Uniqueness: $\varphi_+ \mapsto u$?
- **3** Completeness: $\forall u, \exists \varphi_+$?

In the case of (NLS) with φ_+ in $L^2(\mathbb{R}^d)$, we know

- Existence: Yes, if $d \ge 3$ and 2/d . (N. '00)
- Oliqueness: An open problem.

• Completeness: No, there are solitons $u(t,x) = e^{it\omega + i\xi x}\varphi(x - ct)$. There are many results for more restricted φ_+ , u, e.g., if $|x|^s \varphi_+ \in L^2(\mathbb{R}^d)$ with some $s \ge 2/p - d/2$, then the unique existence, as well as the completeness for small u (Ginibre-Ozawa-Velo '94, N.-Ozawa '02). For p = 2/d, the asymptotics need nonlinear modification (Ozawa '91). For $4/d \le p \le 4/(d-2)$, blow-up occurs backward in time for some solutions asymptotically free near $t = \infty$ (cf. N.-Schlag '12).

Why is the uniqueness difficult? It is supercritical.

Scattering means that the nonlinear interactions are small perturbation from the linear equation for $t \to \infty$. So, when it works well, the problem should be easier for smaller φ_+ and u, as well as for larger t.

Why is the uniqueness difficult? It is supercritical.

Scattering means that the nonlinear interactions are small perturbation from the linear equation for $t \to \infty$. So, when it works well, the problem should be easier for smaller φ_+ and u, as well as for larger t. The scaling invariance of (**NLS**) shows that it is not the case for p < 4/d:

$$\begin{split} u(t,x):(\mathsf{NLS}) \implies \forall \lambda > 0, \ u_{\lambda}(t,x) := \lambda^{2/p} u(\lambda^2 t, \lambda x):(\mathsf{NLS}), \\ \|u_{\lambda}(0)\|_{L^2(\mathbb{R}^d)} = \lambda^{2/p-d/2} \|u(0)\|_{L^2(\mathbb{R}^d)} \to 0 \quad (\lambda \to +0). \end{split}$$

By the scaling, the scattering problem under the restrictions

$$\|\varphi_+\|_{L^2} \leq \varepsilon, \quad \|u(0)\|_{L^2} \leq \varepsilon, \quad t \geq 1/\varepsilon$$

is equivalent (for any $\varepsilon > 0$) to that with

$$\|\varphi_+\|_{L^2} \leq 1, \quad \|u(0)\|_{L^2} \leq 1, \quad t \geq 1.$$

Hence neither the smallness of φ_+ and u(0) nor largeness of t helps.

Kenji Nakanishi (RIMS)

Supercriticality v.s. Randomization

Randomizing the data can break the supercriticality. Burq-Tzvetkov ('08) considered the (rough) initial data problem for the nonlinear wave equation:

(NLW)
$$\ddot{u} - \Delta u = -u^3$$
, $u(t, x) : \mathbb{R} \times M \to \mathbb{R}$,

on 3D closed Riemannian manifold M.

Supercriticality v.s. Randomization

Randomizing the data can break the supercriticality. Burq-Tzvetkov ('08) considered the (rough) initial data problem for the nonlinear wave equation:

(NLW)
$$\ddot{u} - \Delta u = -u^3$$
, $u(t, x) : \mathbb{R} \times M \to \mathbb{R}$,

on 3D closed Riemannian manifold M. The scaling on \mathbb{R}^3 suggests

 $(u(0),\dot{u}(0))=(f_1,f_2)\in H^s(M) imes H^{s-1}(M)$: Sobolev space

is a supercritical setting if s < 1/2.

Supercriticality v.s. Randomization

Randomizing the data can break the supercriticality. Burq-Tzvetkov ('08) considered the (rough) initial data problem for the nonlinear wave equation:

$$(\mathsf{NLW})$$
 $\ddot{u} - \Delta u = -u^3$, $u(t, x) : \mathbb{R} \times M \to \mathbb{R}$,

on 3D closed Riemannian manifold M. The scaling on \mathbb{R}^3 suggests

 $(u(0),\dot{u}(0))=(f_1,f_2)\in H^s(M) imes H^{s-1}(M)$: Sobolev space

is a supercritical setting if s < 1/2. Randomizing the initial data

$$\begin{aligned} H^{s} \times H^{s-1} \ni (f_{1}, f_{2}) &\mapsto (f_{1}^{\omega}, f_{2}^{\omega}) \in L^{2}(\Omega; H^{s} \times H^{s-1}), \\ (u(0), \dot{u}(0)) &= (f_{1}^{\omega}, f_{2}^{\omega}), \end{aligned}$$

in a probability space Ω , however, they proved unique existence of local solutions for almost every $\omega \in \Omega$ for $s \ge 1/4$.

Randomization for scattering

Recently, Murphy ('17 arxiv) employed the idea to tackle the supercritical scattering problem, namely p < 4/d and $\varphi_+ \in L^2(\mathbb{R}^d)$ for (NLS)

$$i\dot{u} - \Delta u = |u|^{p}u \quad u(t,x) : \mathbb{R}^{1+d} \to \mathbb{C}.$$

Randomization for scattering

Recently, Murphy ('17 arxiv) employed the idea to tackle the supercritical scattering problem, namely p < 4/d and $\varphi_+ \in L^2(\mathbb{R}^d)$ for (NLS)

$$i\dot{u} - \Delta u = |u|^{p}u \quad u(t,x) : \mathbb{R}^{1+d} \to \mathbb{C}.$$

 $\forall d \in \mathbb{N}, \exists p_0(d) \in (2/d, 4/d), \forall p \in (p_0(d), 4/d), \forall \varphi_+ \in L^2(\mathbb{R}^d), \text{ almost}$ every $\omega \in \Omega, \exists ! u$: sol. of (**NLS**) (in a certain function space), s.t.

$$\|u(t)-e^{it\Delta}\varphi^{\omega}_+\|_{L^2(\mathbb{R}^d)} \to 0 \quad (t\to\infty).$$

Randomization for scattering

Recently, Murphy ('17 arxiv) employed the idea to tackle the supercritical scattering problem, namely p < 4/d and $\varphi_+ \in L^2(\mathbb{R}^d)$ for (NLS)

$$i\dot{u} - \Delta u = |u|^p u \quad u(t,x) : \mathbb{R}^{1+d} \to \mathbb{C}.$$

 $\forall d \in \mathbb{N}, \exists p_0(d) \in (2/d, 4/d), \forall p \in (p_0(d), 4/d), \forall \varphi_+ \in L^2(\mathbb{R}^d), \text{ almost}$ every $\omega \in \Omega, \exists ! u$: sol. of (**NLS**) (in a certain function space), s.t.

$$\|u(t)-e^{it\Delta}arphi_+^\omega\|_{L^2(\mathbb{R}^d)} o 0\quad (t o\infty).$$

Here $p_0(d)$ is called the Strauss exponent for (**NLS**):

$$p_0(d) = \frac{\sqrt{d^2 + 12d + 4} - d + 2}{2d},$$

$$p_0(1) = 2.56..., \quad p_0(2) = \sqrt{2}, \quad p_0(3) = 1, \quad p_0(4) = 0.78...$$

Quadratic nonlinearity on \mathbb{R}^3 is excluded.

Murphy defined the randomization $L^2(\mathbb{R}^d) \times \Omega \ni (\varphi, \omega) \mapsto \varphi^{\omega}$ as follows. Let $\{g_k(\omega)\}_{k \in \mathbb{Z}^d}$ be i.i.d. mean-0 Gaussian random variables, and $\chi \in C_c^{\infty}(\mathbb{R}^d)$ s.t.

$$0\leq \chi, \quad \sum_{k\in \mathbb{Z}^d}\chi(x-k)=1.$$

Then φ^ω is given by

$$\varphi^{\omega}(x) := \sum_{k \in \mathbb{Z}^d} g_k(\omega) \varphi_k(x), \quad \varphi_k(x) := \chi(x-k) \varphi(x).$$

Murphy defined the randomization $L^2(\mathbb{R}^d) \times \Omega \ni (\varphi, \omega) \mapsto \varphi^{\omega}$ as follows. Let $\{g_k(\omega)\}_{k \in \mathbb{Z}^d}$ be i.i.d. mean-0 Gaussian random variables, and $\chi \in C_c^{\infty}(\mathbb{R}^d)$ s.t.

$$0 \leq \chi, \quad \sum_{k \in \mathbb{Z}^d} \chi(x-k) = 1.$$

Then φ^ω is given by

$$arphi^{\omega}(x) := \sum_{k \in \mathbb{Z}^d} g_k(\omega) \varphi_k(x), \quad \varphi_k(x) := \chi(x-k) \varphi(x).$$

Note that each φ_k is compactly supported (localized) around $k \in \mathbb{Z}^d$.

Lührmann-Mendelson ('14) considered the above form of randomization in the Fourier transform, for the initial data problem of (NLW) on \mathbb{R}^3 .

Each localized piece $\varphi_k \in L^1(\mathbb{R}^d)$ enjoys much better dispersion, e.g.,

$$\|e^{it\Delta}\varphi_k\|_{L^{\infty}(\mathbb{R}^d)} \lesssim |t|^{-d/2}\|\varphi_k\|_{L^1(\mathbb{R}^d)},$$

than the original $\varphi \in L^2(\mathbb{R}^d)$.

Each localized piece $\varphi_k \in L^1(\mathbb{R}^d)$ enjoys much better dispersion, e.g.,

$$\|e^{it\Delta}arphi_k\|_{L^\infty(\mathbb{R}^d)}\lesssim |t|^{-d/2}\|arphi_k\|_{L^1(\mathbb{R}^d)},$$

than the original $\varphi \in L^2(\mathbb{R}^d)$. Randomization reduces interactions among them in average, through (Burq-Tzvetkov)

$$2 \leq \forall \alpha < \infty, \ \forall c \in \ell^2(\mathbb{Z}^d), \quad \|\sum_k g_k(\omega) c_k\|_{L^{\alpha}(\Omega)} \lesssim \sqrt{\alpha} \|c\|_{\ell^2(\mathbb{Z}^d)}.$$

Each localized piece $\varphi_k \in L^1(\mathbb{R}^d)$ enjoys much better dispersion, e.g.,

$$\|e^{it\Delta}arphi_k\|_{L^\infty(\mathbb{R}^d)}\lesssim |t|^{-d/2}\|arphi_k\|_{L^1(\mathbb{R}^d)},$$

than the original $\varphi \in L^2(\mathbb{R}^d)$. Randomization reduces interactions among them in average, through (Burq-Tzvetkov)

$$2 \leq \forall \alpha < \infty, \ \forall c \in \ell^2(\mathbb{Z}^d), \quad \|\sum\nolimits_k \mathsf{g}_k(\omega) c_k\|_{L^{\alpha}(\Omega)} \lesssim \sqrt{\alpha} \|c\|_{\ell^2(\mathbb{Z}^d)}.$$

In particular, the Strichartz estimate gains more integrability (Murphy):

$$\begin{aligned} \|e^{it\Delta}\varphi^{\omega}\|_{L^{\alpha}_{\omega}L^{q}_{t}L^{r}_{t}(\Omega\times(1,\infty)\times\mathbb{R}^{d})} &\lesssim \sqrt{\alpha}\|\varphi\|_{L^{2}(\mathbb{R}^{d})},\\ \frac{1}{q} &> \frac{d}{2} - \frac{d}{r}, \quad 2 \leq q, r \leq \alpha < \infty. \end{aligned}$$

The deterministic case (w/o ω) is only for $\frac{2}{a} = \frac{d}{2} - \frac{d}{r}$, $2 \le q, r \le \infty$.

Main result

We extend Murphy's result to lower powers p.

Theorem (N.-Yamamoto '18)

 $\forall d \in \mathbb{N}, \exists p_1(d) \in (2/d, p_0(d)), \forall p \in (p_1(d), 4/d), \forall \varphi \in L^2(\mathbb{R}^d), \text{ almost} \\ every \ \omega \in \Omega, \exists ! u: \text{ sol. of } (\mathsf{NLS}) \text{ (in another function space), s.t.} \\ \|u(t) - e^{it\Delta}\varphi^{\omega}_+\|_{L^2(\mathbb{R}^d)} \to 0 \text{ as } t \to \infty.$

Main result

We extend Murphy's result to lower powers p.

Theorem (N.-Yamamoto '18)

 $\forall d \in \mathbb{N}, \exists p_1(d) \in (2/d, p_0(d)), \forall p \in (p_1(d), 4/d), \forall \varphi \in L^2(\mathbb{R}^d), \text{ almost} \\ every \ \omega \in \Omega, \exists ! u: \text{ sol. of } (\mathsf{NLS}) \text{ (in another function space), s.t.} \\ \|u(t) - e^{it\Delta}\varphi^{\omega}_+\|_{L^2(\mathbb{R}^d)} \to 0 \text{ as } t \to \infty.$

In particular, since $p_1(3) < 1$, we can treat quadratic interactions in \mathbb{R}^3 , such as (**NSS**), as well as (**GP**).

$$p_1(d) = \frac{\sqrt{d^2 + 24d + 16} - d + 4}{4d}, \quad p_0(d) = \frac{\sqrt{d^2 + 12d + 4} - d + 2}{2d},$$
$$p_1(1) = 2.35, \quad p_1(2) = 1.28, \quad p_2(3) = 0.00, \quad p_2(4) = 0.70,$$

 $p_1(1) = 2.35..., p_1(2) = 1.28..., p_1(3) = 0.90..., p_1(4) = 0.70..., p_0(1) = 2.56..., p_0(2) = 1.41..., p_0(3) = 1, p_0(4) = 0.78...$

Critical exponents: Scaling and Dispersion

 $(\ensuremath{\mathsf{NLS}})$ is invariant for the scaling

$$egin{aligned} u(t,x)&\mapsto u_\lambda(t,x)=\lambda^{2/p}u(\lambda^2t,\lambda x)\quad (\lambda>0),\ &\|u_\lambda(0)\|_{L^q_x(\mathbb{R}^d)}=\|u(0)\|_{L^q_x(\mathbb{R}^d)}\iff q=dp/2. \end{aligned}$$

Critical exponents: Scaling and Dispersion

 $\left(\text{NLS} \right)$ is invariant for the scaling

$$egin{aligned} u(t,x)&\mapsto u_\lambda(t,x)=\lambda^{2/p}u(\lambda^2 t,\lambda x)\quad (\lambda>0),\ &\|u_\lambda(0)\|_{L^q_x(\mathbb{R}^d)}=\|u(0)\|_{L^q_x(\mathbb{R}^d)}\iff q=dp/2. \end{aligned}$$

Dispersive estimate for the free Schrödinger evolution is

$$v(t) = e^{it\Delta}\varphi, \ 1 \leq r \leq 2 \implies \|v(t)\|_{L^{r^*}_x(\mathbb{R}^d)} \lesssim |t|^{-\frac{d}{2}+\frac{d}{r}} \|\varphi\|_{L^r_x(\mathbb{R}^d)}.$$

Critical exponents: Scaling and Dispersion

 $\left(\text{NLS} \right)$ is invariant for the scaling

$$egin{aligned} u(t,x)&\mapsto u_\lambda(t,x)=\lambda^{2/p}u(\lambda^2 t,\lambda x)\quad (\lambda>0),\ &\|u_\lambda(0)\|_{L^q_x(\mathbb{R}^d)}=\|u(0)\|_{L^q_x(\mathbb{R}^d)}\iff q=dp/2. \end{aligned}$$

Dispersive estimate for the free Schrödinger evolution is

$$\mathsf{v}(t)=e^{it\Delta}arphi, \ 1\leq r\leq 2 \implies \|\mathsf{v}(t)\|_{L^{r^*}_x(\mathbb{R}^d)}\lesssim |t|^{-rac{d}{2}+rac{d}{r}}\|arphi\|_{L^r_x(\mathbb{R}^d)}.$$

The four critical exponents are characterized by

- Fujita exponent: $p = 2/d \iff q = 1$.
- **2** mass-critical exponent: $p = 4/d \iff q = 2$.
- Strauss exponent: $p = p_0(d) \iff q = (p+2)^*$. For t > 0,

$$arphi \in L^{(p+2)^*}_x \implies v(t) \in L^{p+2}_x \implies |v(t)|^p v(t) \in L^{(p+2)^*}_x$$

• Our exponent: $p = p_1(d) \iff q = (2p+2)^*$. For t > 0,

$$arphi \in \mathcal{L}^{(2p+2)*}_x \implies \mathsf{v}(t) \in \mathcal{L}^{2p+2}_x \implies |\mathsf{v}(t)|^p \mathsf{v}(t) \in \mathcal{L}^2_x.$$

The main result

The result for (GP): Randomized in the energy space

Around the plane waves, the (renormalized) L^2 is no longer positive, but

$$u = e^{-it}(1 + v), \quad E(u) := \int_{\mathbb{R}^3} \frac{|\nabla u|^2}{2} + \frac{(|u|^2 - 1)^2}{4} dx > 0.$$

The main result

The result for (GP): Randomized in the energy space

Around the plane waves, the (renormalized) L^2 is no longer positive, but

$$u = e^{-it}(1 + v), \quad E(u) := \int_{\mathbb{R}^3} \frac{|\nabla u|^2}{2} + \frac{(|u|^2 - 1)^2}{4} dx > 0.$$

We need a \mathbb{C} -linearization to get a 'free' unitary group:

$$w := \sqrt{2 - \Delta} \operatorname{Re} v + i \sqrt{-\Delta} \operatorname{Im} v, \quad E(u) \approx \|w\|_{L^2(\mathbb{R}^2)}^2.$$

Then, $\forall \varphi \in L^2(\mathbb{R}^3)$, a.s. $\omega \in \Omega$, $\exists ! u$: sol. of (GP) s.t.,

$$\|w(t)-e^{i\sqrt{-\Delta(2-\Delta)}t}\varphi^{\omega}_+\|_{L^2} o 0 \quad (t o\infty).$$

The result for (GP): Randomized in the energy space

Around the plane waves, the (renormalized) L^2 is no longer positive, but

$$u = e^{-it}(1 + v), \quad E(u) := \int_{\mathbb{R}^3} \frac{|\nabla u|^2}{2} + \frac{(|u|^2 - 1)^2}{4} dx > 0.$$

We need a \mathbb{C} -linearization to get a 'free' unitary group:

$$w := \sqrt{2 - \Delta} \operatorname{Re} v + i \sqrt{-\Delta} \operatorname{Im} v, \quad E(u) \approx \|w\|_{L^2(\mathbb{R}^2)}^2.$$

Then, $\forall \varphi \in L^2(\mathbb{R}^3)$, a.s. $\omega \in \Omega$, $\exists ! u$: sol. of (**GP**) s.t.,

$$\|w(t)-e^{i\sqrt{-\Delta(2-\Delta)}t}\varphi^{\omega}_+\|_{L^2}
ightarrow 0\quad (t
ightarrow\infty).$$

In the deterministic case, the existence is by Gustafson-N.-Tsai ('09), but we need in general a quadratic correction term in the asymptotic formula. For φ^{ω}_+ we do not need it, because $\varphi^{\omega}_+ \in \dot{H}^s(\mathbb{R}^d)$ a.s., for s > -3/2.

Open problem: Global dynamics from Random initail data

Consider the randomized initial data problem for (NLS)

$$\begin{split} & i\dot{u} + \Delta u = -|u|^p u, \quad u(t,x) : \mathbb{R}^{1+d} \to \mathbb{C} \quad (d \in \mathbb{N}, \ 2/d$$

Since $\varphi^{\omega} \in L^2(\mathbb{R}^d)$ a.s., we have a global solution $u \in C(\mathbb{R}; L^2(\mathbb{R}^d))$ (Tsutsumi '87). What is its asymptotic behavior as $t \to \infty$?

Open problem: Global dynamics from Random initail data

Consider the randomized initial data problem for (NLS)

$$egin{aligned} & \dot{u} + \Delta u = -|u|^p u, \quad u(t,x): \mathbb{R}^{1+d} o \mathbb{C} \quad (d \in \mathbb{N}, \ 2/d$$

Since $\varphi^{\omega} \in L^2(\mathbb{R}^d)$ a.s., we have a global solution $u \in C(\mathbb{R}; L^2(\mathbb{R}^d))$ (Tsutsumi '87). What is its asymptotic behavior as $t \to \infty$?

Randomized soliton resolution conjecture

For almost every $\omega \in \Omega$, there is a sequence of solitons (maybe infinite) $u_j(t,x) = e^{it\omega_j + ix\xi_j}\varphi_j(x - c_jt)$ and $\varphi_+ \in L^2(\mathbb{R}^d)$ such that

$$\|u(t)-\sum_{j}u_{j}(t)-e^{it\Delta}\varphi_{+}\|_{L^{2}(\mathbb{R}^{d})}\rightarrow 0 \quad (t\rightarrow\infty).$$