Scattering for the 3D Gross-Pitaevskii equation

Zihua Guo
Monash University
(joint with Zaher Hani, Kenji Nakanishi)

Jan 25, 2019

Outline

(1) Introduction and results

Outline

(1) Introduction and results
(2) Proof of the theorem

- Difficulty 1: singularity at zero frequency
- Difficulty 2: 3D quadratic term
- Difficulty 3: weak low-frequency component of u_{2}

Outline

(1) Introduction and results

(2) Proof of the theorem

- Difficulty 1 : singularity at zero frequency
- Difficulty 2: 3D quadratic term
- Difficulty 3: weak low-frequency component of u_{2}

Gross-Pitaevskii (GP) equation

Consider the Gross-Pitaevskii (GP) equation

$$
\begin{equation*}
i \psi_{t}+\Delta \psi=\left(|\psi|^{2}-1\right) \psi, \quad \psi: \mathbb{R}^{1+3} \rightarrow \mathbb{C} \tag{1}
\end{equation*}
$$

with the boundary condition

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} \psi=1 \tag{2}
\end{equation*}
$$

Gross-Pitaevskii (GP) equation

Consider the Gross-Pitaevskii (GP) equation

$$
\begin{equation*}
i \psi_{t}+\Delta \psi=\left(|\psi|^{2}-1\right) \psi, \quad \psi: \mathbb{R}^{1+3} \rightarrow \mathbb{C} \tag{1}
\end{equation*}
$$

with the boundary condition

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} \psi=1 \tag{2}
\end{equation*}
$$

Formally, let $\phi=e^{-i t} \psi$, then ϕ solves

$$
\begin{equation*}
i \phi_{t}+\Delta \phi=|\phi|^{2} \phi \tag{3}
\end{equation*}
$$

Gross-Pitaevskii (GP) equation

Consider the Gross-Pitaevskii (GP) equation

$$
\begin{equation*}
i \psi_{t}+\Delta \psi=\left(|\psi|^{2}-1\right) \psi, \quad \psi: \mathbb{R}^{1+3} \rightarrow \mathbb{C} \tag{1}
\end{equation*}
$$

with the boundary condition

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} \psi=1 \tag{2}
\end{equation*}
$$

Formally, let $\phi=e^{-i t} \psi$, then ϕ solves

$$
\begin{equation*}
i \phi_{t}+\Delta \phi=|\phi|^{2} \phi \tag{3}
\end{equation*}
$$

The non-vanishing boundary condition: very different. Physical contexts: Bose-Einstein condensates, superfluids and nonlinear optics, or in the hydrodynamic interpretation of NLS

Energy conservation

Let $u=\psi-1$. Then u satisfies zero boundardy condition and

$$
\begin{equation*}
i \partial_{t} u+\Delta u-2 \operatorname{Re} u=u^{2}+2|u|^{2}+|u|^{2} u \tag{4}
\end{equation*}
$$

which is equivalent to (writing $u=u_{1}+i u_{2}$)

$$
\begin{align*}
\dot{u}_{1} & =-\Delta u_{2}+2\left(u_{1}+|u|^{2} / 2\right) u_{2}, \\
-\dot{u}_{2} & =(2-\Delta) u_{1}+3 u_{1}^{2}+u_{2}^{2}+|u|^{2} u_{1} . \tag{5}
\end{align*}
$$

Energy conservation

Let $u=\psi-1$. Then u satisfies zero boundardy condition and

$$
\begin{equation*}
i \partial_{t} u+\Delta u-2 \operatorname{Re} u=u^{2}+2|u|^{2}+|u|^{2} u \tag{4}
\end{equation*}
$$

which is equivalent to (writing $u=u_{1}+i u_{2}$)

$$
\begin{align*}
\dot{u}_{1} & =-\Delta u_{2}+2\left(u_{1}+|u|^{2} / 2\right) u_{2} \\
-\dot{u}_{2} & =(2-\Delta) u_{1}+3 u_{1}^{2}+u_{2}^{2}+|u|^{2} u_{1} \tag{5}
\end{align*}
$$

Conservation of the energy:

$$
\begin{align*}
E(u) & :=\int_{\mathbb{R}^{3}}|\nabla u|^{2}+\frac{\left(|u|^{2}+2 \operatorname{Re} u\right)^{2}}{2} d x \\
& =\int_{\mathbb{R}^{3}}|\nabla \psi|^{2}+\frac{\left(|\psi|^{2}-1\right)^{2}}{2} d x=E\left(u_{0}\right) \tag{6}
\end{align*}
$$

Note. We do not have conservation of $\|u\|_{2}^{2}$, but $\|u(t)\|_{2} \leq C e^{C t}$ by Gronwall inequality.

Well-posedness

■ In Zhidkov space $X^{k}=\left\{u \in L^{\infty}: \partial^{\alpha} \in L^{2}, 1 \leq|\alpha| \leq k\right\}$
$d=1$: Zhidkov 1987;
$d=2,3$: Gallo 2004

- In H^{1}, GWP
$d=2,3$: Béthuel and Saut 1999
■ In energy space, GWP
$d=1,2,3$ and small data for $d=4$: Gérard;
$d=4$: Killip-Oh-Pocovnicu-Visan
Remark. No scattering in the above works.

GWP in energy space

Energy space

$$
\begin{equation*}
\mathbb{E}:=\left\{f \in \dot{H}^{1}\left(\mathbb{R}^{3}\right): 2 \operatorname{Re} f+|f|^{2} \in L^{2}\left(\mathbb{R}^{3}\right)\right\} \tag{7}
\end{equation*}
$$

with the distance $d_{\mathbb{E}}(f, g)$ defined by

$$
d_{\mathbb{E}}(f, g)^{2}=\|\nabla(f-g)\|_{L^{2}}^{2}+\frac{1}{2}\left\||f|^{2}+2 \operatorname{Re} f-|g|^{2}-2 \operatorname{Re} g\right\|_{L^{2}}^{2} .
$$

Note that $\left(\mathbb{E}, d_{\mathbb{E}}\right)$ is a complete metric space.

GWP in energy space

Energy space

$$
\begin{equation*}
\mathbb{E}:=\left\{f \in \dot{H}^{1}\left(\mathbb{R}^{3}\right): 2 \operatorname{Re} f+|f|^{2} \in L^{2}\left(\mathbb{R}^{3}\right)\right\} \tag{7}
\end{equation*}
$$

with the distance $d_{\mathbb{E}}(f, g)$ defined by

$$
d_{\mathbb{E}}(f, g)^{2}=\|\nabla(f-g)\|_{L^{2}}^{2}+\frac{1}{2}\left\||f|^{2}+2 \operatorname{Re} f-|g|^{2}-2 \operatorname{Re} g\right\|_{L^{2}}^{2}
$$

Note that $\left(\mathbb{E}, d_{\mathbb{E}}\right)$ is a complete metric space.

Theorem (Gérard, 2006)

Unconditional GWP of (4) in the energy space \mathbb{E}.
Remark. GWP in $H^{1} \subset \mathbb{E}$, Béthuel-Saut, 1999. method: LWP by Strichartz analysis + energy conservation

Traveling wave solutions

There are a family of the solutions $\psi(t, x)=v_{c}(x-c t)$ with finite energy for $0<|c|<\sqrt{2}$.
Moreover, Béthuel-Gravejat-Saut 2009 proved that in 3D

$$
\begin{array}{r}
E^{*}:=\inf \{E(\psi-1) \mid 1 \neq \psi(t, x)=v(x-c t) \\
\text { solves }(1) \text { for some } c\}>0
\end{array}
$$

conjectured that E^{*} is the threshold for the global dispersive solutions.

Traveling wave solutions

There are a family of the solutions $\psi(t, x)=v_{c}(x-c t)$ with finite energy for $0<|c|<\sqrt{2}$.
Moreover, Béthuel-Gravejat-Saut 2009 proved that in 3D

$$
\begin{array}{r}
E^{*}:=\inf \{E(\psi-1) \mid 1 \neq \psi(t, x)=v(x-c t) \\
\text { solves }(1) \text { for some } c\}>0
\end{array}
$$

conjectured that E^{*} is the threshold for the global dispersive solutions.

Remark.

1. In 2D, there is no lower bound.
2. In the radial case, are there special non-scattering solutions in energy space? Not clear.

Scattering

In 3D, scattering was proved by Gustafson-Nakanishi-Tsai $(2006,2007,2009)$ for small data in weighted Sobolev space.

Question: What about the energy space?

Scattering

In 3D, scattering was proved by Gustafson-Nakanishi-Tsai $(2006,2007,2009)$ for small data in weighted Sobolev space.

Question: What about the energy space?

Theorem (G.-Hani-Nakanishi, 2017)

For 3D GP equation, scattering holds for small radial data in \mathbb{E}.

Remark. Radial symmetry can be replaced by additional one order angular regularity.

Remaining questions: How about non-radial case? What about large data? Is smallness not needed?

Let's state our theorem more precisely.

By the diagonalising transform

$$
\begin{equation*}
u=u_{1}+i u_{2} \longrightarrow v=v_{1}+i v_{2}:=u_{1}+i U u_{2} \tag{8}
\end{equation*}
$$

with

$$
U:=\sqrt{-\Delta(2-\Delta)^{-1}}
$$

we can rewrite the GP equation for v :

$$
\begin{equation*}
i \partial_{t} v-H v=U\left(3 u_{1}^{2}+u_{2}^{2}+|u|^{2} u_{1}\right)+i\left(2 u_{1} u_{2}+|u|^{2} u_{2}\right) \tag{9}
\end{equation*}
$$

where (one can write $u_{1}=v_{1}, u_{2}=U^{-1} v_{2}$)

$$
\begin{equation*}
H:=\sqrt{-\Delta(2-\Delta)} \tag{10}
\end{equation*}
$$

Note. H has symbol $|\xi| \sqrt{2+|\xi|^{2}}$. It behaves as Schrödinger equation for high frequency and as wave equation for low frequency.

Theorem

There exists $\delta>0$ such that for any $u_{0} \in \mathbb{E}$, radial, with $E\left(u_{0}\right) \leq \delta$, there exists a unique global solution $u \in C(\mathbb{R}: \mathbb{E})$ to (4). Moreover, there exists $\phi_{ \pm} \in H^{1}$ such that

$$
\begin{equation*}
\lim _{t \rightarrow \pm \infty}\left\|u_{1}+(2-\Delta)^{-1} u_{2}^{2}+i U u_{2}-e^{-i t H} \phi_{ \pm}\right\|_{H^{1}}=0 \tag{11}
\end{equation*}
$$

Remark.

We have the decay for quadratic terms of u_{1} (not true for u_{2}):

$$
\lim _{t \rightarrow \pm \infty}\left\|(2-\Delta)^{-1} u_{1}^{2}\right\|_{H^{1}}=0
$$

We can transfer the asymptotic behaviour in the energy space \mathbb{E}. Indeed, we can prove

$$
\lim _{t \rightarrow \pm \infty} d_{\mathbb{E}}\left(u, T^{-1}\left(e^{-i t H} \phi_{ \pm}\right)\right)=0
$$

where $T(u)=T\left(u_{1}+i u_{2}\right)=u_{1}+(2-\Delta)^{-1} u_{2}^{2}+i U u_{2}$.

Outline

(1) Introduction and results

(2) Proof of the theorem

- Difficulty 1: singularity at zero frequency
- Difficulty 2: 3D quadratic term
- Difficulty 3: weak low-frequency component of u_{2}

Outline

(1) Introduction and results

(2) Proof of the theorem

- Difficulty 1: singularity at zero frequency
- Difficulty 2: 3D quadratic term
- Difficulty 3: weak low-frequency component of u_{2}

Difficulty 1: singularity at zero frequency

At low frequency $U^{-1} \approx|\nabla|^{-1}$.
Idea. Nonlinear transform

This was treated by Gustafson-Nakanishi-Tsai using some nonlinear transform

$$
\begin{equation*}
z=z_{1}+i z_{2}=u_{1}+\frac{u_{1}^{2}+u_{2}^{2}}{2-\Delta}+i U u_{2} \tag{12}
\end{equation*}
$$

Under the transform (12)

$$
\begin{align*}
i z_{t}-H z= & -2 i U\left(u_{1}^{2}\right)-4\langle\nabla\rangle^{-2} \nabla \cdot\left(u_{1} \nabla u_{2}\right) \\
& +\left[-i U\left(|u|^{2} u_{1}\right)+U^{2}\left(|u|^{2} u_{2}\right)\right] \tag{13}
\end{align*}
$$

Note. Quadratic terms have no zero frequency singularity.

Outline

(1) Introduction and results

(2) Proof of the theorem

- Difficulty 1: singularity at zero frequency
- Difficulty 2: 3D quadratic term
- Difficulty 3: weak low-frequency component of u_{2}

Consider the 3D Schrödinger equation

$$
i u_{t}+\Delta u=|u|^{p} u
$$

For scattering, with small data in H^{s}, Strichartz analysis requires $p \geq \frac{4}{3}$, can not work for u^{2}.

Consider the 3D Schrödinger equation

$$
i u_{t}+\Delta u=|u|^{p} u
$$

For scattering, with small data in H^{s}, Strichartz analysis requires $p \geq \frac{4}{3}$, can not work for u^{2}.

Scattering results for $p<\frac{4}{3}$:

- $0<p \leq \frac{2}{3}$

Any nontrivial solution u, with $\phi \in \mathcal{S}$, does not scatter to linear solution in L^{2}. (Glassey 1974, Strauss 1974)

- $\frac{2}{3}<p<\frac{4}{3}$

For any $\phi \in H^{1}$ with $\|x \phi\|_{2}<\infty$, the solution u scatters to linear solution in L^{2}. (Tsutsumi-Yajima, 1984)
Nakanishi-Ozawa 2002, Masaki 2015

- $p=\frac{2}{3}$

Modified scatterings occur. Ozawa, Hayashi, Naumkin, etc

Note. For quadratic terms $2 / 3<1<4 / 3$
Weighted H^{s} is usually needed for 3 D quadratic terms.
Our ideas. Replace weighted H^{s} by additional angular regularity. In particular, in the radial case, we can handle H^{s}.

Use earlier ideas in the works on 3D Zakharov system (G.-Nakanishi 2012, G.-Lee-Nakanishi-Wang 2015)

To illustrate our ideas, we consider the classical 3D quadratic Klein-Gordon equation

$$
\begin{equation*}
u_{t t}-\Delta u+u=u^{2} \tag{14}
\end{equation*}
$$

To study the asymptotic problems, there are two well-known methods

To illustrate our ideas, we consider the classical 3D quadratic Klein-Gordon equation

$$
\begin{equation*}
u_{t t}-\Delta u+u=u^{2} \tag{14}
\end{equation*}
$$

To study the asymptotic problems, there are two well-known methods
■ Klainerman's vector field method (1985) Existence of enough vector fields + energy estimates

To illustrate our ideas, we consider the classical 3D quadratic Klein-Gordon equation

$$
\begin{equation*}
u_{t t}-\Delta u+u=u^{2} \tag{14}
\end{equation*}
$$

To study the asymptotic problems, there are two well-known methods
■ Klainerman's vector field method (1985) Existence of enough vector fields + energy estimates
■ Shatah's normal form method (1985) Non-resonant structure + normal form transform (transfer the quadratic term to a cubic or higher order term).
Key non-resonance: $\langle\xi\rangle+\langle\eta\rangle-\langle\xi+\eta\rangle \gtrsim \frac{1}{\langle\eta\rangle}$

To illustrate our ideas, we consider the classical 3D quadratic Klein-Gordon equation

$$
\begin{equation*}
u_{t t}-\Delta u+u=u^{2} \tag{14}
\end{equation*}
$$

To study the asymptotic problems, there are two well-known methods
■ Klainerman's vector field method (1985) Existence of enough vector fields + energy estimates

- Shatah's normal form method (1985) Non-resonant structure + normal form transform (transfer the quadratic term to a cubic or higher order term).
Key non-resonance: $\langle\xi\rangle+\langle\eta\rangle-\langle\xi+\eta\rangle \gtrsim \frac{1}{\langle\eta\rangle}$
Our approach: generalized Strichartz estimates+(partial) normal form

$$
\left(i \partial_{t}+\langle D\rangle\right) u=\langle D\rangle^{-1} u^{2}
$$

Let $K(t)=e^{i t(D\rangle}$. Then
Lemma 1 (radial case) (G.-Nakanishi-Wang 2013). Let $r>10 / 3$, for ϕ radial

$$
\left\|e^{i t(D\rangle} P_{k} \phi\right\|_{L_{t}^{2} L_{x}} \lesssim 2^{k \beta_{k}}\|\phi\|_{L_{x}^{2}},
$$

where $P_{k} \approx \mathcal{F}^{-1} 1_{|\xi| \sim 2^{k}} \mathcal{F}$ and

$$
\beta_{k}=\left\{\begin{array}{l}
\frac{1}{2}-\frac{3}{r}, \\
1-\frac{3}{r}, \\
\frac{1}{4}+\epsilon, \quad k \geq 0 ; \frac{10}{3}<r<4 ; \\
\frac{1}{r}, \\
\frac{1}{r}, \quad k \geq 0 ; r>4 .
\end{array}\right.
$$

Remark. The classical best non-radial estimates

$$
\left\|e^{i t(D\rangle} P_{k} \phi\right\|_{L_{t}^{2} L_{x}} \lesssim 2^{5 k / 6}\|\phi\|_{L_{x}^{2}} .
$$

Wave: Klainerman-Machedon, Sogge, Sterbenz 2005 Schrödinger: Sogge, Shao, G.-Wang 2010

Lemma 2 (non-radial case) (G.-Hani-Nakanishi 2016). Let $r>10 / 3$,

$$
\left\|e^{i t(D\rangle} P_{k} \phi\right\|_{L_{t}^{2} L_{x}^{L} L_{\sigma}} \lesssim B_{k}(2, r)\|\phi\|_{L_{x}^{2}},
$$

where $P_{k} \approx \mathcal{F}^{-1} 1_{|\xi| \sim 2^{k}} \mathcal{F}$ and

$$
B_{k}(2, r)=\left\{\begin{array}{lc}
2^{k\left(\frac{1}{2}-\frac{3}{r}\right)}, & k<0 ; \\
2^{k\left(1-\frac{3}{r}\right)}, & k \geq 0 ; \frac{10}{3}<r<4 ; \\
\langle k\rangle 2^{\frac{k}{4}}, & k \geq 0 ; r=4 ; \\
2^{\frac{k}{r}}, & k \geq 0 ; r>4 .
\end{array}\right.
$$

Remark.

Wave: Sterbenz 2005
Schrödinger: G.-Lee-Nakanishi-Wang 2014, G. 2016
Theorem. Scattering for 3D quadratic KG with small data in $H^{1} \times L^{2}$ and with 1-order angular regularity.

Generalized Strichartz for GP

Lemma 3 (G.-Hani-Nakanishi 2016). For GP, we have: for $r>10 / 3$,

$$
\begin{equation*}
\left\|e^{-i t H} P_{k} \phi\right\|_{L_{t}^{2} L_{x} L_{\sigma}^{2}} \lesssim C_{k}(2, r)\|\phi\|_{L_{x}^{2}\left(\mathbb{R}^{3}\right)} \tag{15}
\end{equation*}
$$

where

$$
C_{k}(2, r)= \begin{cases}2^{k\left(\frac{1}{2}-\frac{3}{r}\right)}, & k \geq 0 ; \tag{16}\\ 2^{k\left(2-\frac{7}{r}\right)}, & k<0, \frac{10}{3}<r<4 ; \\ 2^{k\left(1-\frac{3}{r}\right)}, & k<0, r>4 ; \\ \langle k\rangle 2^{\frac{k}{4}}, & k<0, r=4\end{cases}
$$

Note. $H:=\sqrt{-\Delta(2-\Delta)}$.

Intermediate Theorem

With this estimate and the nonlinear transform by (12), we get

Theorem

Scattering holds for small radial data $u(0) \in H^{1}$.
Question: What about energy space \mathbb{E} ? For small data, we can think

$$
\mathbb{E}=\left\{u: \operatorname{Re} u \in H^{1}, \operatorname{Im} u \in \dot{H}^{1} \cap L^{4}\right\}
$$

Difficulty. $\operatorname{Im} u \notin L^{2}$.

Outline

(1) Introduction and results

(2) Proof of the theorem

- Difficulty 1: singularity at zero frequency
- Difficulty 2: 3D quadratic term
- Difficulty 3: weak low-frequency component of u_{2}

Difficulty. For $u(0) \in \mathbb{E}$, we can only have $\nabla u_{2}(0) \in L^{2}$.
Recall under the nonlinear transform

$$
\begin{gather*}
z=z_{1}+i z_{2}=u_{1}+\frac{u_{1}^{2}+u_{2}^{2}}{2-\Delta}+i U u_{2} \tag{17}\\
i z_{t}-H z= \tag{18}\\
+2 i U\left(u_{1}^{2}\right)-4\langle\nabla\rangle^{-2} \nabla \cdot\left(u_{1} \nabla u_{2}\right) \\
+\left[-i U\left(|u|^{2} u_{1}\right)+U^{2}\left(|u|^{2} u_{2}\right)\right] .
\end{gather*}
$$

Problematic terms: $u_{2}^{2} \Delta u_{2}$ or $u_{2}^{2} u_{1}$ when u_{2} has very low frequency. Key new ingredients: "Null-structure" achieved by new nonlinear transform. Let

$$
\begin{equation*}
m=m_{1}+i m_{2}=u_{1}+\frac{2 u_{1}^{2}+u_{2}^{2}}{2-\Delta}+i U u_{2} \tag{19}
\end{equation*}
$$

Then

$$
i \partial_{t} m-H m=N_{2}(m)+N_{3}(m, u)+N_{4}(m, u)+N_{5}(m, u)
$$

where

$$
\begin{aligned}
& N_{2}(m, u)=U\left(m_{1}^{2}\right)+\frac{2 i}{2-\Delta}\left[-3 m_{1} \Delta u_{2}-2 \nabla m_{1} \cdot \nabla u_{2}\right], \\
& N_{3}(m, u)=U\left(2 m_{1} R\right)+i N_{3}^{1}(u)+\frac{2 i}{2-\Delta}\left[4 u_{1} m_{1} u_{2}-m_{1}^{2} u_{2}\right], \\
& N_{4}(m, u)=U\left(R^{2}-|u|^{4} / 4\right)+\frac{2 i}{2-\Delta}\left[4 u_{1} R u_{2}-2 u_{2} m_{1} R\right], \\
& N_{5}(m, u)=\frac{2 i}{2-\Delta}\left[-u_{2} R^{2}+u_{2}|u|^{4} / 4\right],
\end{aligned}
$$

with

$$
\begin{gathered}
R=\frac{-\Delta u_{2}^{2}}{2(2-\Delta)}-\frac{(2+\Delta) u_{1}^{2}}{2(2-\Delta)}, \\
N_{3}^{1}(u)=(2-\Delta)^{-1}\left\{-2 u_{2}\left|\nabla u_{2}\right|^{2}+\frac{3 \Delta u_{2}^{2}}{2-\Delta} \Delta u_{2}+\frac{2 \nabla \Delta u_{2}^{2}}{2-\Delta} \nabla u_{2}\right\} \\
+\frac{4}{2-\Delta}\left[\frac{2 u_{1}^{2}}{2-\Delta} \Delta u_{2}\right]-\left[\frac{2+\Delta}{2-\Delta} u_{1}^{2}\right] u_{2} .
\end{gathered}
$$

Remark

Our nonlinear transform can achieve cancellation and is actually natural.

The GP equation (4) for $u=u_{1}+i u_{2}$ can be rewritten as follows

$$
\begin{aligned}
\dot{u}_{1} & =-\Delta u_{2}+2\left(u_{1}+|u|^{2} / 2\right) u_{2}, \\
-\dot{u}_{2} & =(2-\Delta) u_{1}+3 u_{1}^{2}+u_{2}^{2}+|u|^{2} u_{1} \\
& =(2-\Delta)\left(u_{1}\right)+2 u_{1}^{2}+u_{2}^{2}+\left(2 u_{1}+|u|^{2}\right)^{2} / 4-|u|^{4} / 4 .
\end{aligned}
$$

Note that $2 u_{1}+|u|^{2} \in L^{2}$ is bounded by the conserved energy. In view of the equation of u_{2}, we first make the following change of variables

$$
z_{1}:=u_{1}+\frac{2 u_{1}^{2}+u_{2}^{2}}{2-\Delta}, \quad z_{2}=u_{2}
$$

Thank you very much!

