
Hw 5 (12.1-12.5) (22002973)

Q	Question 1234567891011121314151617181920212223242526272829303132333435	
1.	Question Details Find the distance between the given points. $(-1, -5, 2), (6, 4, 3)$	SCalcET9M 12.1.010. [5093663] -
2.	Question Details SCa Find an equation of the sphere that passes through the point (8, 3, -3) and has center (5, 6, 3).
3.	Question Details Find an equation of the set of all points equidistant from the points $A(-3, 5, 3)$ and $B(6, 2, -2)$ Describe the set. a sphere with diameter AB a cube with diagonal AB a plane perpendicular to AB	SCalcET9M 12.1.049. [4783909] -

SCalcET9M 12.2.004. [4784333]

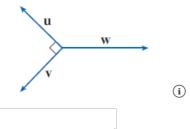
Write each combination of vectors as a single vector.

(a) $\overrightarrow{AB} + \overrightarrow{BC}$

L			

(b) $\overrightarrow{CD} + \overrightarrow{DB}$

(c) $\overrightarrow{DB} - \overrightarrow{AB}$



(d) $\overrightarrow{DC} + \overrightarrow{CA} + \overrightarrow{AB}$

5. Question Details

SCalcET9M 12.2.008. [5093736]

If the vectors in the figure satisfy $|\mathbf{u}| = |\mathbf{v}| = 1$ and $\mathbf{u} + \mathbf{v} + \mathbf{w} = \mathbf{0}$, what is $|\mathbf{w}|$?

6. Question Detail

|w| =

SCalcET9M 12.2.020. [5093286]

Find $\mathbf{a}+\mathbf{b}$, $4\mathbf{a}+2\mathbf{b}$, $|\mathbf{a}|$, and $|\mathbf{a}-\mathbf{b}|$. (Simplify your vectors completely.)

$$\mathbf{a} = \mathbf{4i} + \mathbf{j}, \quad \mathbf{b} = \mathbf{i} - \mathbf{3j}$$

SCalcET9M 12.2.026. [4783679]

Find the vector that has the same direction as $\left<2,\,6,\,-9\right>$ but has length 4.

8. Question Details

SCalcET9M 12.3.003. [5094122]

Find **a** · **b**.

$$a = \langle 4.5, 0.2 \rangle, \quad b = \langle -5, 2 \rangle$$

9. Question Details

SCalcET9M 12.3.009. [4784395]

Find $\mathbf{a} \cdot \mathbf{b}$.

 $|\mathbf{a}| = 7$, $|\mathbf{b}| = 4$, the angle between \mathbf{a} and \mathbf{b} is 30°.

//

10. Question Details

SCalcET9M 12.3.015. [4784028]

Find the angle between the vectors. (First find an exact expression and then approximate to the nearest degree.)

$$\mathbf{a} = \langle 7, 2 \rangle, \quad \mathbf{b} = \langle 2, -1 \rangle$$

exact

approximate

11.	Ouestion	Details

SCalcET9M 12.3.023. [4784439]

Determine whether the given vectors are orthogonal, parallel, or neither.

- (a) $a = \langle 9, 3 \rangle$, $b = \langle -2, 6 \rangle$
 - orthogonal
 - parallel
 - neither
- (b) $\mathbf{a} = \langle 6, 7, -3 \rangle, \quad \mathbf{b} = \langle 5, -1, 7 \rangle$
 - $\bigcirc \ \ \text{orthogonal}$
 - parallel
 - O neither
- (c) $\mathbf{a} = -4\mathbf{i} + 8\mathbf{j} + 12\mathbf{k}$, $\mathbf{b} = 3\mathbf{i} 6\mathbf{j} 9\mathbf{k}$
 - orthogonal
 - O parallel
 - neither

(d)
$$\mathbf{a} = 4\mathbf{i} - \mathbf{j} + 4\mathbf{k}$$
, $\mathbf{b} = 5\mathbf{i} + 12\mathbf{j} - 2\mathbf{k}$

- orthogonal
- O parallel
- neither

12. Question Details

SCalcET9M 12.3.025.EP. [5093932]

Consider the triangle with vertices P(2, -5, -3), Q(3, -2, -5), and R(7, -4, -6).

Determine the following vectors.

$$\overrightarrow{QP} =$$

$$\overrightarrow{QR} =$$

Find $\overrightarrow{QP} \cdot \overrightarrow{QR}$.

$$\overrightarrow{QP} \cdot \overrightarrow{QR} =$$

Is the given triangle right-angled?

- Yes, it is right-angled.
- No, it is not right-angled.


13. Question Details

SCalcET9M 12.3.039. [4783919]

Find the scalar and vector projections of \boldsymbol{b} onto $\boldsymbol{a}.$

$$\mathbf{a} = \langle -3, 4 \rangle, \quad \mathbf{b} = \langle 3, 6 \rangle$$

scalar projection of **b** onto **a**

vector projection of \boldsymbol{b} onto \boldsymbol{a}

SCalcET9M 12.3.044. [5093310]

Find the scalar and vector projections of **b** onto **a**.

$$a = i + 4j + 5k,$$
 $b = 6i - k$

scalar projection of **b** onto **a**

vector projection of ${\bf b}$ onto ${\bf a}$

	//

15. Question Details

SCalcET9M 12.3.AE.003. [4784377]

Video Example (1)

EXAMPLE 3 Find the angle between the vectors $\mathbf{a} = \langle 4, 4, -2 \rangle$ and $\mathbf{b} = \langle 3, -1, 3 \rangle$.

SOLUTION Since

$$|\mathbf{a}| = \sqrt{4^2 + 4^2 + (-2)^2} =$$

and

$$|\mathbf{b}| = \sqrt{3^2 + (-1)^2 + 3^2} =$$

and since

$$a \cdot b = (4)(\boxed{\boxed{\boxed{\boxed{\boxed{-1}}}} + (4)(-1) + (-2)(\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{-2}}}}}}}$$

we have from this corollary

$$\cos(\theta) = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} =$$

So the angle between ${\bf a}$ and ${\bf b}$ is as follows. (Round your final answer to two decimal places.)

16. Question Details

SCalcET9M 12.4.002. [5093369]

Find the cross product $\mathbf{a} \times \mathbf{b}$.

$$\mathbf{a} = \langle 7, 6, -5 \rangle, \quad \mathbf{b} = \langle 2, -1, 1 \rangle$$

Verify that it is orthogonal to both **a** and **b**.

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} =$$

3. [4784380]
:

State	e whether each expression is meaningful. If not, explain why. If so, state whether it is a vector or a scalar.
(a)	$\mathbf{a}\cdot(\mathbf{b}\times\mathbf{c})$
	○ The expression is meaningful. It is a vector.
	The expression is meaningful. It is a scalar.
	 The expression is meaningless. The cross product is defined only for two vectors.
	 The expression is meaningless. The dot product is defined only for two vectors.
(b)	$\mathbf{a} \times (\mathbf{b} \cdot \mathbf{c})$
	○ The expression is meaningful. It is a vector.
	○ The expression is meaningful. It is a scalar.
	O The expression is meaningless. The cross product is defined only for two vectors.
	The expression is meaningless. The dot product is defined only for two vectors.
(c)	$\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$
	○ The expression is meaningful. It is a vector.
	○ The expression is meaningful. It is a scalar.
	○ The expression is meaningless. The cross product is defined only for two vectors.
	 The expression is meaningless. The dot product is defined only for two vectors.
(d)	$\mathbf{a}\cdot(\mathbf{b}\cdot\mathbf{c})$
	○ The expression is meaningful. It is a vector.
	The expression is meaningful. It is a scalar.
	 The expression is meaningless. The cross product is defined only for two vectors.
	O The expression is meaningless. The dot product is defined only for two vectors.
(e)	$(\mathbf{a} \cdot \mathbf{b}) \times (\mathbf{c} \cdot \mathbf{d})$
	○ The expression is meaningful. It is a vector.
	○ The expression is meaningful. It is a scalar.
	○ The expression is meaningless. The cross product is defined only for two vectors.
	O The expression is meaningless. The dot product is defined only for two vectors.
(f)	$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d})$
	○ The expression is meaningful. It is a vector.
	The expression is meaningful. It is a scalar.
	 The expression is meaningless. The cross product is defined only for two vectors.
	 The expression is meaningless. The dot product is defined only for two vectors.

18.	Ouestion	Details

SCalcET9M 12.4.023, [4784130]

If **a**, **b**, and **c** are vectors and *c* is a scalar, then we have the following properties.

1.
$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

2. $(c\mathbf{a}) \times \mathbf{b} = c(\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times (c\mathbf{b})$
3. $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$
4. $(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$
5. $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$
6. $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$

Prove the property $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$ of the theorem above.

Let $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$. Then,

$$\mathbf{a} \times \mathbf{b} =$$

$$= (-1)$$

$$= -\mathbf{b} \times \mathbf{a}.$$

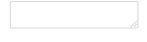
19. Question Details

SCalcET9M 12.4.028. [5093301]

Find the area of the parallelogram with vertices P(1, 1, 2), Q(3, 3, 3), R(7, 8, 12), and S(5, 6, 11).

20. Question Details

SCalcET9M 12.4.032. [5093332]


Consider the points below.

$$P(3, -2, 5), Q(-1, -2, 3), R(2, 1, -3)$$

(a) Find a nonzero vector orthogonal to the plane through the points P, Q, and R.

(b) Find the area of the triangle PQR.

21. Question Details

SCalcET9M 12.4.033. [4784456]

Find the volume of the parallelepiped determined by the vectors ${\bf a},\,{\bf b},$ and ${\bf c}.$

$$a = \langle 1, 4, 4 \rangle, b = \langle -1, 1, 5 \rangle, c = \langle 5, 1, 3 \rangle$$

cubic units

22. Question Details

SCalcET9M 12.4.037. [4784252]

Use the scalar triple product to determine if the vectors $\mathbf{u} = \mathbf{i} + 4\mathbf{j} - 3\mathbf{k}$, $\mathbf{v} = 4\mathbf{i} - \mathbf{j}$, and $\mathbf{w} = 7\mathbf{i} + 11\mathbf{j} - 9\mathbf{k}$ are coplanar.

- O Yes, they are coplanar.
- O No, they are not coplanar.

SCalcET9M 12.4.038.EP. [5093592]

Consider the following points.

$$A(3, 2, 3), B(6, -3, 7), C(9, 0, 0), D(6, 5, -4)$$

Let $\mathbf{u} = \overrightarrow{AB}$, $\mathbf{v} = \overrightarrow{AC}$, and $\mathbf{w} = \overrightarrow{AD}$. Find each of these vectors.

Find the scalar triple product $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$.

Do the given points A, B, C, and D all lie in the same plane?

- O Yes, they lie in the same plane.
- \bigcirc No, they do not lie in the same plane.

24. Question Details

SCalcET9M 12.5.002. [4784296]

Find a vector equation and parametric equations for the line. (Use the parameter t.)

The line through the point (3, 2.5, 3.6) and parallel to the vector $3\mathbf{i} + 3\mathbf{j} - \mathbf{k}$

$$\mathbf{r}(t) =$$

$$(x(t), y(t), z(t)) = ($$

25. Question Details

SCalcET9M 12.5.006. [4783806]

Find parametric equations for the line. (Use the parameter t.)

the line through the points $\left(0, \frac{1}{2}, 1\right)$ and $\left(5, 1, -5\right)$

$$(x(t), y(t), z(t)) = ($$

Find the symmetric equations.

$$\bigcirc$$
 $x - 5 = 2y - 2 = z + 5$

$$\bigcirc \frac{x+5}{-6} = 2y - 2 = \frac{z-5}{5}$$

$$2x-2=\frac{y-5}{5}=\frac{z+5}{-6}$$

$$0 5 + 5x = 1 + \frac{y}{2} = -5 - 6z$$

$$\bigcirc \frac{x-5}{5} = 2y - 2 = \frac{z+5}{-6}$$

26.	Ouestion	Details

CalcFT9M	12 5	016	[4784621]

(a)	Find parametric equations for the line through (3, 3, 8) that is perpendicular to the plane $x - y + 4z = 4$. (Use the
	parameter t.)

$$\left(x(t), y(t), z(t)\right) = \left(\begin{array}{c} \\ \end{array}\right)$$

(b) In what points does this line intersect the coordinate planes?

xy-plane $\left(x(t), y(t), z(t)\right) = \left($

yz-plane $\left(x(t), y(t), z(t)\right) = \left(\begin{array}{c} \\ \\ \end{array}\right)$

xz-plane $\left(x(t), y(t), z(t)\right) = \left(\begin{array}{c} \\ \end{array}\right)$

27. Question Details

SCalcET9M 12.5.025. [5093711]

Find an equation of the plane.

the plane through the point (4, -2, 5) and perpendicular to the vector $-\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$

28. Question Details

SCalcET9M 12.5.030. [5093987]

Find an equation of the plane.

the plane that contains the line x = 2 + t, y = 3 - t, z = 3 - 3t and is parallel to the plane 5x + 2y + z = 8

29. Question Details

SCalcET9M 12.5.032. [5093482]

Find an equation of the plane.

the plane through the origin and the points (5, -3, 2) and (1, 1, 1)

30. Question Details

SCalcET9M 12.5.037. [5093643]

Find an equation of the plane.

the plane that passes through the point (4, 3, 2) and contains the line of intersection of the planes x + 2y + 3z = 1 and 2x - y + z = -3

SCalcET9M 12.5.040. [4783889]

Find an equation of the plane.

the plane that passes through the line of intersection of the planes x - z = 2 and y + 3z = 1 and is perpendicular to the plane x + y - 4z = 3

32. Question Details

SCalcET9M 12.5.050. [4783772]

Find the cosine of the angle between the planes x + y + z = 0 and x + 3y + 2z = 5.

33. Question Details

SCalcET9M 12.5.059. [4784042]

Find symmetric equations for the line of intersection of the planes.

$$3x - 3y - 3z = -6$$
, $3x + y + z = 6$

- $y = 3, \frac{x-1}{-12} = \frac{z}{12}$
- x = -1, y + 3 = -z
- \bigcirc x = 1, y + 3 = -z
- $x 1 = \frac{y 3}{-12} = \frac{z}{12}$
- \bigcirc x = 1, y 3 = -z
- 34. Question Details

SCalcET9M 12.5.065. [4784399]

Find parametric equations for the line through the point (0, 2, 2) that is parallel to the plane x + y + z = 1 and perpendicular to the line x = 1 + t, y = 2 - t, z = 2t. (Use the parameter t.)

$$\left(x(t),\,y(t),\,z(t)\right)=\left(\begin{array}{c} \\ \end{array}\right)$$

35. Question Details

SCalcET9M 12.5.078. [4784173]

Find the distance between the skew lines with parametric equations x = 1 + t, y = 1 + 6t, z = 2t, and x = 1 + 2s, y = 6 + 14s, z = -2 + 5s.

Assignment Details