The mean curvature flow of compact submanifolds in higher codimension

Kuo-Wei Lee Institute of Mathematics, Academia Sinica

November 20, 2010

References

- M.-T. Wang, Long-time existence and convergence of graphic mean curvature flow in arbitrary codimension. Invent. Math. 148 (2002), no. 3, 525–543.
- M.-P. Tsui; M.-T. Wang, *Mean curvature flows and isotopy of maps between spheres.* Comm. Pure Appl. Math. 57 (2004), no. 8, 1110–1126.

Outline

- 1. Preliminaries.
 - Mean curvature flow.
 - Main results.
 - Parallel n-form.
- 2. Proof of theorem.
 - Long time existence.
 - Convergence.
- 3. Applications.

Mean curvature flow (MCF) in Riemannian manifolds.

- $\blacktriangleright~(N_1^n,g)$ and $(N_2^m,h):$ compact Riemannian manifolds.
- ▶ $f: N_1 \to N_2$ a smooth map. Denote $\Sigma = (x, f(x))$: the graph of f.
- Σ : embedded submfd in $M = N_1 \times N_2$ with $F = id. \times f : N_1 \to M$.
- MCF of Σ is a smooth family $F_t: N_1 \to M$ satisfying

$$\begin{cases} \left(\frac{\partial F_t(x)}{\partial t}\right)^{\perp} = H(x,t)\\ F_0(N_1) = \Sigma \end{cases}$$

H: mean curvature vector of $F_t(N_1) = \Sigma_t$.

 $(\cdot)^{\perp}$: projection onto the normal bundle $N\Sigma_t$ of Σ_t .

▶ By standard PDE theory, the flow has short time existence.

Results

Theorem (K.-W. Lee, Y.-I. Lee) Let $f: (N_1, g, K_{N_1} \ge k_1) \rightarrow (N_2, h, K_{N_2} \le k_2).$ Suppose either $k_1 \ge 0, k_2 \le 0$, or $k_1 \ge k_2 > 0.$ If $\frac{\det((g+f^*h)_{ij})}{\det(g_{ij})} < 4$, or f: area decreasing map, then

- (i) The graph of f is preserved along MCF; long time existence.
- (ii) If $k_1 > 0$ (locally symmetric), then f converges to a constant map.

Remark

In Tsui and Wang's paper, constant curvature, $k_1 \ge |k_2|$, and det < 2.

Parallel *n*-form Ω on M ($\nabla^M \Omega = 0$); evolution equation

- Choose o.n. frames $\{e_i\}_{i=1}^n$ for $T\Sigma_t$ and $\{e_\alpha\}_{\alpha=n+1}^{n+m}$ on $N\Sigma_t$.
- $\Omega_{1\cdots n} = \Omega(e_1, \dots, e_n)$ satisfies

$$\frac{\partial}{\partial t}\Omega_{1\dots n} = \Delta\Omega_{1\dots n} + \Omega_{1\dots n} \left(\sum_{\alpha,i,k} (h_{ik}^{\alpha})^2 \right) \\ - 2\sum_{\alpha<\beta,k} \left(\Omega_{\alpha\beta3\dots n} h_{1k}^{\alpha} h_{2k}^{\beta} + \dots + \Omega_{1\dots(n-2)\alpha\beta} h_{(n-1)k}^{\alpha} h_{nk}^{\beta} \right) \\ - \sum_{\alpha,k} \left(\Omega_{\alpha2\dots n} R_{\alpha kk1} + \dots + \Omega_{1\dots(n-1)\alpha} R_{\alpha kkn} \right)$$

 $\begin{array}{ll} \Delta: \text{ time-dependent Laplacian on } \Sigma_t. & h_{ij}^{\alpha} = \langle \nabla_{e_i}^M e_j, e_{\alpha} \rangle. \\ R: \text{ the curvature tensor of } M = N_1 \times N_2 \text{ with } g + h. \end{array}$

A special parallel *n*-form

- Since $M = N_1 \times N_2$, the volume form Ω_1 of N_1 can be extended as a parallel *n*-form on M.
- At p on Σ_t , we have $*\Omega = \Omega_1(e_1, \ldots, e_n) = \Omega_1(\pi_1(e_1), \ldots, \pi_1(e_n))$. Jacobian of the projection from $T_p\Sigma_t$ to $T_{\pi_1(p)}N_1$.
- ► By the implicit function theorem, we know $*\Omega > 0$ near $p \iff \Sigma_t$ is locally a graph over N_1 near p.

Singular value decomposition theorem

Theorem

$$[A]_{m \times n} = [U]_{m \times m} [\Lambda]_{m \times n} \left[V^T \right]_{n \times n}.$$

- ► U,V: orthogonal.
- Λ : diagonal, and
 - $\Lambda_{ii} = \lambda_i, \ \lambda_1 \ge \cdots \ge \lambda_r > 0, \ r = rank \ A.$
 - $\Lambda_{ii} = 0 \quad \forall \ i = r+1, \dots, \min\{m, n\}.$

Remark

$$A = U\Lambda V^T \Leftrightarrow AV = U\Lambda \Leftrightarrow Av_i = \lambda_i u_i.$$

Singular value decomposition theorem (continued)

▶ Apply SVD to $df_t : T_{\pi_1(p)}N_1 \to T_{\pi_2(p)}N_2$, \exists o.n. basis $\{a_i\}_{i=1}^n$ for $T_{\pi_1(p)}N_1$ and $\{a_\alpha\}_{\alpha=n+1}^{n+m}$ for $T_{\pi_2(p)}N_2$ such that

$$\mathrm{d} f_t(a_i) = \lambda_i a_{n+i} \ \, \text{for} \ \, 1 \leq i \leq r, \ \text{and} \ \, \mathrm{d} f_t(a_i) = 0 \ \, \text{for} \ \, r \leq i \leq n.$$

• Get special o.n. bases $\{E_i\}_{i=1}^n$ on $T_p\Sigma_t$ and $\{E_\alpha\}_{\alpha=n+1}^{n+m}$ on $N_p\Sigma_t$:

$$E_i = \begin{cases} \frac{1}{\sqrt{1+\lambda_i^2}} (a_i + \lambda_i a_{n+i}) & \text{if } 1 \le i \le r \\ a_i & \text{if } r+1 \le i \le n, \end{cases}$$
$$E_{n+q} = \begin{cases} \frac{1}{\sqrt{1+\lambda_q^2}} (a_{n+q} - \lambda_q a_q) & \text{if } 1 \le q \le r \\ a_{n+q} & \text{if } r+1 \le q \le m, \end{cases}$$

• Thus,
$$*\Omega = \Omega_1(\pi_1(E_1), \dots, \pi_1(E_n)) = \frac{1}{\sqrt{\prod_{i=1}^n (1+\lambda_i^2)}}.$$

Lemma (Evolution Equation for $*\Omega$, M.-T. Wang)

If the MCF of Σ is a graph over N_1 , then $*\Omega$ satisfies:

$$\frac{\partial}{\partial t} *\Omega = \Delta *\Omega + *\Omega |A|^2 + *\Omega \left\{ 2 \sum_{k,i$$

where $|A|^2$: norm square of the second fundamental form, and R_1, R_2 : curvature tensors on $(N_1, g), (N_2, h)$, respectively.

Lemma (Evolution Eqn. for $\ln *\Omega$, M.-P. Tsui; M.-T. Wang.)

The evolution equation can be rewritten as the form:

$$\begin{split} \frac{\partial}{\partial t} \ln *\Omega = &\Delta \ln *\Omega + |A|^2 + \sum_{i,k} \lambda_i^2 \left(h_{ik}^{n+i}\right)^2 + 2\sum_{k,i$$

Results

Theorem (K.-W. Lee, Y.-I. Lee)

Let
$$f: (N_1, g, K_{N_1} \ge k_1) \to (N_2, h, K_{N_2} \le k_2).$$

Suppose either $k_1 \ge 0, k_2 \le 0$, or $k_1 \ge k_2 > 0$.

If $\frac{\det((g+f^*h)_{ij})}{\det(g_{ij})} < 4$, or f: area decreasing map, then

(i) The graph of f is preserved along MCF; long time existence.

(ii) If $k_1 > 0$ (locally symmetric), then f converges to a constant map.

Remark

$$*\Omega = \frac{\sqrt{\det(g_{ij})}}{\sqrt{\det((g+f^*h)_{ij})}} = \frac{1}{\sqrt{\prod_{i=1}^n (1+\lambda_i^2)}} > \frac{1}{2} \text{ at } t = 0.$$

Proof of (i) $\frac{\partial}{\partial t} \ln *\Omega = \Delta \ln *\Omega + I + II, \text{ where}$

 $\mathsf{I}=\mathsf{second}$ fundamental form terms

$$= |A|^2 + \sum_{i,k} \lambda_i^2 \left(h_{ik}^{n+i}\right)^2 + 2 \sum_{k,i < j} \lambda_i \lambda_j h_{ik}^{n+j} h_{jk}^{n+i}$$

II = curvature tensor terms

$$=\sum_{i,k} \left(\frac{\lambda_i^2}{(1+\lambda_i^2)(1+\lambda_k^2)} \langle R_1(a_k,a_i)a_k,a_i \rangle - \frac{\lambda_i^2 \lambda_k^2}{(1+\lambda_i^2)(1+\lambda_k^2)} \langle R_2(a_{n+k},a_{n+i})a_{n+k},a_{n+i} \rangle \right)$$
$$=\sum_{i,k\neq i} \left(\frac{\lambda_i^2}{(1+\lambda_i^2)(1+\lambda_k^2)} K_{N_1}(a_k,a_i) - \frac{\lambda_i^2 \lambda_k^2}{(1+\lambda_i^2)(1+\lambda_k^2)} K_{N_2}(a_{n+k},a_{n+i}) \right)$$

Remark

$$\begin{split} R(X,Y)Z &= -\nabla_X \nabla_Y Z + \nabla_Y \nabla_X Z + \nabla_{[X,Y]} Z \\ R_{ijkl} &= \langle R(e_k,e_l)e_i,e_j \rangle \\ K(e_k,e_i) &= \langle R(e_k,e_i)e_k,e_i \rangle, \ \text{ where } \{e_i\} \text{ are orthonormal.} \end{split}$$

The "graph" property is preserved by MCF.

• Goal: there exists $\delta > 0$ such that

$$\frac{\partial}{\partial t}\ln*\Omega\geq \Delta\ln*\Omega+\delta|A|^2,$$

by the maximum principle,

$$\begin{split} \min_{\Sigma_t}\ln*\Omega \text{ is nondecreasing in } t, \Rightarrow *\Omega \geq \min_{\Sigma_{t=0}}*\Omega > 0. \\ \text{Thus } \Sigma_t \text{ remains the graph of a map } f_t: N_1 \to N_2 \text{ whenever the flow exists.} \end{split}$$

• At
$$t = 0$$
, $\frac{\det((g+f^*h)_{ij})}{\det(g_{ij})} = \prod_{i=1}^n (1+\lambda_i^2) < 4.$

►
$$N_1$$
: cpt. Assumption $\Rightarrow \prod_{i=1}^n (1 + \lambda_i^2) \le 4 - \varepsilon$ on $\Sigma_{t=0}$ for $\varepsilon > 0$.

Proof of the evolution inequality.

- ▶ By continuity and short time existence, the solution remains the graph and $\prod_{i=1}^{n} (1 + \lambda_i^2) \le 4 \frac{\varepsilon}{2}$ for small t.
- ▶ In particular, when $i \neq j$, $(1 + \lambda_i^2)(1 + \lambda_j^2) \leq 4 \frac{\varepsilon}{2}$. By mean inequality, we have $|\lambda_i \lambda_j| \leq 1 \delta$ for $\delta = \frac{\varepsilon}{8} > 0, i \neq j$.
- Thus

$$\begin{split} & \mathsf{I} \ge \delta |A|^2 + (1-\delta) \sum_{i,j,k} \left(h_{jk}^{n+i} \right)^2 - 2(1-\delta) \sum_{k,i < j} \left| h_{jk}^{n+i} h_{ik}^{n+j} \right| \\ & \ge \delta |A|^2 + (1-\delta) \sum_{k,i < j} \left(\left| h_{jk}^{n+i} \right| - \left| h_{ik}^{n+j} \right| \right)^2 \\ & \ge \delta |A|^2. \end{split}$$

For curvature tensor terms,

(a) If $k_1 \ge 0, k_2 \le 0$, we have

$$\mathsf{II} \geq \sum_{i,k\neq i} \left(\frac{\lambda_i^2}{\left(1+\lambda_i^2\right)\left(1+\lambda_k^2\right)} k_1 - \frac{\lambda_i^2 \lambda_k^2}{\left(1+\lambda_i^2\right)\left(1+\lambda_k^2\right)} k_2 \right) \geq 0.$$

(b) If
$$k_1 \ge k_2 > 0$$
, then

$$\begin{aligned} \mathsf{II} &\geq \sum_{i,k\neq i} \left(\frac{\lambda_i^2}{(1+\lambda_i^2)(1+\lambda_k^2)} k_1 - \frac{\lambda_i^2 \lambda_k^2}{(1+\lambda_i^2)(1+\lambda_k^2)} k_2 \right) \\ &\geq \sum_{i,k\neq i} \left(\frac{\lambda_i^2 - \lambda_i^2 \lambda_k^2}{(1+\lambda_i^2)(1+\lambda_k^2)} \right) k_2 = \sum_{i$$

$$\begin{split} & \text{Since } |\lambda_i \lambda_k| < 1, \lambda_i^2 + \lambda_k^2 - 2\lambda_i^2 \lambda_k^2 = (\lambda_i - \lambda_k)^2 + 2\lambda_i \lambda_k - 2\lambda_i^2 \lambda_k^2 = \\ & (\lambda_i - \lambda_k)^2 + 2\lambda_i \lambda_k (1 - \lambda_i \lambda_k) \geq 0. \end{split}$$

Hence II ≥ 0 .

Long time existence

Definiton

A *regular point* is a point where the second fundamental form is locally bounded in $2, \alpha$ -Hölder norm.

Theorem (B. White's regularity theorem)

There is an $\varepsilon = \varepsilon(n, m, \alpha) > 0$ such that whenever

$$\lim_{t \to t_0} \int_{\Sigma_t} \rho_{y_0, t_0} d\mu_t < 1 + \varepsilon,$$

it can concluded that (y_0, t_0) is a regular point.

In our case, we need to define ρ_{y_0,t_0} , and "calculate" $\lim_{t \to t_0} \int_{\Sigma_t} \rho_{y_0,t_0} \mathsf{d} \mu_t$.

Isometrically embedding theorem

Theorem (Nash)

There are isometric embeddings in \mathbb{R}^N , $N = \frac{n}{2}(3n+11)$, of any compact *n*-dimensional Riemannian manifold.

- We isometrically embed $M = N_1 \times N_2$ into \mathbb{R}^N .
- \blacktriangleright The MCF equation F(x,t) in \mathbb{R}^N becomes

$$\frac{\partial}{\partial t}F(x,t) = H = \bar{H} + E,$$

where $H \in TM/T\Sigma_t$: mean curvature of Σ_t in M, and $\bar{H} \in T\mathbb{R}^N/T\Sigma_t$: mean curvature of Σ_t in \mathbb{R}^N .

n-dimensional backward heat kernel (Huisken)

The backward heat kernel ho_{y_0,t_0} at (y_0,t_0) is

$$\rho_{y_0,t_0} = \frac{1}{(4\pi(t_0-t))^{\frac{n}{2}}} e^{-\frac{|y-y_0|^2}{4(t_0-t)}}.$$

•
$$\frac{\partial}{\partial t}\rho_{y_0,t_0} = -\Delta\rho_{y_0,t_0} - \rho_{y_0,t_0} \left(\frac{|F^{\perp}|^2}{4(t_0-t)^2} + \frac{F^{\perp}\cdot\bar{H}}{t_0-t} + \frac{F^{\perp}\cdot E}{2(t_0-t)}\right)$$
, where $F \in T\mathbb{R}^N/T\Sigma_t$.

- ► The monotonicity formula asserts $\lim_{t \to t_0} \int_{\Sigma_t} \rho_{y_0,t_0} d\mu_t$ exists.
- ▶ We hope to show $\lim_{t \to t_0} \int_{\Sigma_t} \rho_{y_0,t_0} d\mu_t = 1$. However, it is hard to calculate the value directly.

Parabolic dilation

Consider the parabolic dilation D_{λ} at (y_0, t_0) , that is,

$$(y,t) \stackrel{D_{\lambda}}{\longmapsto} (\lambda(y-y_0), \lambda^2(t-t_0)),$$

and set $s = \lambda^2 (t - t_0)$. Denote the corresponding submanifold and volume form after dilation by Σ_s^{λ} and $d\mu_s^{\lambda}$ respectively.

- <u>*E*-almost Brakke flow</u>: view a submanifold as a Radon measure.
- Tangent flow: if the parabolic dilation sequence of *E*-almost Brakke flow Σ_s^{λ} converges to a limit Σ_{-1}^{∞} , this limit is called a tangent flow at (y_0, t_0) .
- Ilmanen shows the existence of tangent flow.

Show (y_0, t_0) is a regular point

The quantity

$$\begin{split} \lim_{t \to t_0} \int_{\Sigma_t} \rho_{y_0, t_0} \mathsf{d}\mu_t &= \lim_{j \to \infty} \int_{\Sigma_{t_j}} \rho_{y_0, t_0} \mathsf{d}\mu_{t_0 + \frac{s_j}{\lambda_j^2}} \stackrel{(1)}{=} \lim_{j \to \infty} \int_{\Sigma_{s_j}^{\lambda_j}} \rho_{0, 0} \mathsf{d}\mu_{s_j}^{\lambda_j} \\ \stackrel{(2)}{=} \int_{\Sigma_{-1}^{\infty}} \rho_{0, 0} \mathsf{d}\mu_{-1}^{\infty} &= \frac{1}{(4\pi)^{\frac{n}{2}}} \int_{\Sigma_{-1}^{\infty}} \exp\left(-\frac{|F_{-1}^{\infty}|^2}{4}\right) \mathsf{d}\mu_{-1}^{\infty} = 1. \end{split}$$

(1)
$$\rho_{0,0} = \frac{1}{\lambda^n} \rho_{y_0,t_0}, \, \mathsf{d}\mu_s^\lambda = \lambda^n \mathsf{d}\mu_t.$$

(2) We need: $\Sigma_{s_j}^{\lambda_j} \to \Sigma_{-1}^{\infty}$ as Radon measure and Σ_{-1}^{∞} is the graph of a linear function.

Convergence

• Goal: there exists $c_0 > 0$ which depends on ε, k_1, n such that

$$II \ge c_0 \sum_{i=1}^n \lambda_i^2 \ge c_0 \ln \left(\prod_{i=1}^n \left(1 + \lambda_i^2 \right) \right) = -2c_0 \ln *\Omega.$$

$$\label{eq:constraint} {\sf Then} \qquad \qquad \frac{\partial}{\partial t}\ln*\Omega \geq \Delta\ln*\Omega - 2c_0\ln*\Omega.$$

$$\blacktriangleright \ \ast \Omega \to 1 \text{ as } t \to \infty.$$

$$\blacktriangleright |A| \to 0 \text{ as } t \to \infty.$$

$$\blacktriangleright |\mathsf{d}f| \to 0 \text{ as } t \to \infty.$$

Proof of (ii)

Goal: Find
$$c_0 > 0$$
 such that $\mathsf{II} \ge c_0 \sum_{i=1}^n \lambda_i^2$.

(a) If $k_1 > 0$, and $k_2 \le 0$, we have $\mathsf{II} \geq \sum_{i:1,\dots,i} \left(\frac{\lambda_i^2}{\left(1 + \lambda_i^2\right)\left(1 + \lambda_k^2\right)} k_1 - \frac{\lambda_i^2 \lambda_k^2}{\left(1 + \lambda_i^2\right)\left(1 + \lambda_k^2\right)} k_2 \right)$ $\geq \sum_{i=1,\dots,n} \frac{\lambda_i^2 k_1}{(1+\lambda_i^2)(1+\lambda_k^2)} \geq \frac{k_1(n-1)}{4} \sum_{i=1}^n \lambda_i^2$ $\text{This is because } \frac{1}{(1+\lambda_i^2)(1+\lambda_i^2)} \geq \frac{1}{\prod_{i=1}^n (1+\lambda_i^2)} \geq \frac{1}{4}.$ Hence we can take $c_0 = \frac{k_1(n-1)}{4}$.

(b) If
$$k_1 \ge k_2 > 0$$
, recall

$$\begin{split} \mathsf{II} &\geq \sum_{i,k \neq i} \left(\frac{\lambda_i^2}{(1+\lambda_i^2)(1+\lambda_k^2)} k_1 - \frac{\lambda_i^2 \lambda_k^2}{(1+\lambda_i^2)(1+\lambda_k^2)} k_2 \right) \\ &\geq \sum_{i,k \neq i} \left(\frac{\lambda_i^2 - \lambda_i^2 \lambda_k^2}{(1+\lambda_i^2)(1+\lambda_k^2)} \right) k_1 = \sum_{i < k} \left(\frac{\lambda_i^2 + \lambda_k^2 - 2\lambda_i^2 \lambda_k^2}{(1+\lambda_i^2)(1+\lambda_k^2)} \right) k_1 \end{split}$$

As the proof (i), we have $|\lambda_i\lambda_k| < 1 - \frac{\varepsilon}{4}$ for all $t \ge 0$. Thus,

$$\lambda_i^2 + \lambda_k^2 - 2\lambda_i^2 \lambda_k^2 = \lambda_i \lambda_k (\lambda_i - \lambda_k)^2 + (1 - \lambda_i \lambda_k) (\lambda_i^2 + \lambda_k^2) \ge \frac{\varepsilon}{4} (\lambda_i^2 + \lambda_k^2)$$

Therefore,

$$\mathsf{II} \geq \frac{\varepsilon k_1}{16} \sum_{i < k} (\lambda_i^2 + \lambda_k^2) = \frac{\varepsilon k_1 (n-1)}{16} \sum_{i=1}^n \lambda_i^2.$$

We can take $c_0 = \frac{\varepsilon k_1(n-1)}{16}$.

<u>Claim</u>: $*\Omega \to 1$ as $t \to \infty$

$$\frac{\partial}{\partial t}\ln*\Omega\geq \Delta\ln*\Omega-2c_0\ln*\Omega$$

Consider a function f(t) which depends only on t and satisfies

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t}f(t) = -2c_0f(t)\\ f(0) = \min_{\Sigma_{t=0}}\ln*\Omega \end{cases} \Rightarrow f(t) = f(0)\mathrm{e}^{-2c_0}t. \end{cases}$$

Then
$$\frac{\partial}{\partial t}(\ln *\Omega - f(t)) \ge \Delta(\ln *\Omega - f(t)) - 2c_0(\ln *\Omega - f(t)).$$

By the maximum principle, because $\min_{\Sigma_{t=0}}(\ln*\Omega-f(t))\geq 0,$ we have

$$\begin{split} &\min_{\Sigma_{t>0}}(\ln *\Omega - f(t)) \geq 0 \\ &\Rightarrow 0 \geq \ln *\Omega \geq f(0) \mathrm{e}^{-2c_0 t} \text{ on } \Sigma_{t\geq 0} \Rightarrow *\Omega \to 1 \text{ as } t \to \infty. \end{split}$$

<u>Claim</u>: $|A| \rightarrow 0$ as $t \rightarrow \infty$. (locally symmetric case)

$$\begin{split} \frac{\partial}{\partial t} |A|^2 = &\Delta |A|^2 - 2|\nabla A|^2 + 2\left((\nabla^M_{\partial_k} R)_{\alpha i j k} + (\nabla^M_{\partial_j} R)_{\alpha k i k} \right) h^{\alpha}_{ij} \\ &- 4R_{lijk} h^{\alpha}_{lk} h^{\alpha}_{ij} + 8R_{\alpha \beta j k} h^{\beta}_{ik} h^{\alpha}_{ij} - 4R_{lkik} h^{\alpha}_{lj} h^{\alpha}_{ij} + 2R_{\alpha k \beta k} h^{\beta}_{ij} h^{\alpha}_{ij} \\ &+ 2\sum_{\alpha, \gamma, i, m} (\sum_k (h^{\alpha}_{ik} h^{\gamma}_{mk} - h^{\alpha}_{mk} h^{\gamma}_{ik}))^2 + 2\sum_{i, j, m, k} (\sum_{\alpha} h^{\alpha}_{ij} h^{\alpha}_{mk})^2 \\ \leq \Delta |A|^2 - 2|\nabla A|^2 + K_1 |A|^4 + K_2 |A|^2. \end{split}$$

The $K_1|A|^4$ term will cause some trouble, so we consider

$$\frac{\partial}{\partial t} \left((*\Omega)^{-2p} |A|^2 \right)
\leq \Delta \left((*\Omega)^{-2p} |A|^2 \right) - (*\Omega)^{-2p} \nabla \left((*\Omega)^{-2p} \right) \cdot \nabla \left((*\Omega)^{-2p} |A|^2 \right)
+ (*\Omega)^{-2p} \left(|A|^4 \left(K_1 - p + 2p(p-1)n\varepsilon_1 \right) + K_2 |A|^2 \right).$$

(Given $\varepsilon_1 > 0$, there exists T such that $*\Omega > \frac{1}{\sqrt{1+\varepsilon_1}}$ for t > T.)

- ► Choose \(\varepsilon_1\) small, and a suitable \(p = p(n, \varepsilon_1) \) ~ \(\frac{1}{\sqrt{\varepsilon_1}\)}\) such that the coefficient of the highest order nonlinear term is negative.
- ► Max. principle, $(\frac{df}{dt} = -K_3 f^2 + K_2 f, f(0) = \max_{t=0} (*\Omega)^{-2p} |A|^2)$, one gets

$$(*\Omega)^{-2p}|A|^2 \leq \frac{K_2}{(\frac{1}{\sqrt{1+\varepsilon_1}})^{1+\sqrt{1+\frac{1}{n\varepsilon_1}}}(\frac{1}{\sqrt{2n\varepsilon_1}}-K_1-1)} \to 0 \text{ as } t \to \infty.$$

- It implies that the mean curvature flow of ∑ converges to a totally geodesic submanifold of M.
- Since $*\Omega \to 1$ as $t \to \infty$, we have $|df_t| \to 0$ and the limit is a constant map.

<u>Claim</u>: $|A| \rightarrow 0$ as $t \rightarrow \infty$. (without locally symmetric)

• N_1 : compact $\Rightarrow |\nabla^M R|$: bounded. Then

$$\frac{\partial}{\partial t}|A|^2 \le \Delta |A|^2 - 2|\nabla A|^2 + K_1|A|^4 + K_2|A|^2 + K_3.$$

• $|A|^2$: uniform bounded in space and time.

▶ Show $\frac{d}{dt} \int_{\Sigma_t} |A|^2 d\mu_t \leq C$ and $\int_0^\infty \int_{\Sigma_t} |A|^2 d\mu_t dt < \infty$. Then

$$\int_{\Sigma_t} |A|^2 \mathrm{d} \mu_t \to 0 \quad \text{ as } \quad t \to \infty.$$

▶ By small ε -regularity theorem (Ilmanen) $\stackrel{?}{\Rightarrow} \sup_{\Sigma_t} |A|^2 \to 0$ uniformly as $t \to \infty$.

Area decreasing case

• A map $f: N_1 \rightarrow N_2$ is area-decreasing if

$$|\wedge^2 \mathsf{d} f|(x) = \sup_{|u \wedge v| = 1} |\mathsf{d} f(u) \wedge \mathsf{d} f(v)| < 1 \Leftrightarrow |\lambda_i \lambda_j| < 1 \; \forall \; i \neq j.$$

► Take parallel tensor $S(X,Y) = g(\pi_1(X),\pi_1(Y)) - h(\pi_2(X),\pi_2(Y)).$

By SVD, we have

$$\begin{split} S &= S(E_i, E_j)_{1 \le i, j \le n+m} = \begin{pmatrix} B & 0 & D & 0 \\ 0 & I_{(n-r) \cdot (n-r)} & 0 & 0 \\ D & 0 & -B & 0 \\ 0 & 0 & 0 & -I_{(m-r) \cdot (m-r)} \end{pmatrix} \\ B_{ij} &= S(E_i, E_j) = \frac{1 - \lambda_i^2}{1 + \lambda_i^2} \delta_{ij}, \quad D_{ij} = S(E_i, E_{n+j}) = -\frac{2\lambda_i}{1 + \lambda_i^2} \delta_{ij} \end{split}$$

Area decreasing case (continued)

 \blacktriangleright The sum of two eigenvalue of S is

$$\frac{1-\lambda_i^2}{1+\lambda_i^2}+\frac{1-\lambda_j^2}{1+\lambda_j^2}=\frac{2(1-\lambda_i^2\lambda_j^2)}{(1+\lambda_i^2)(1+\lambda_j^2)}$$

- ▶ Define S^[2](w₁ ∧ w₂) = S(w₁) ∧ w₂ + w₁ ∧ S(w₂). Then S^[2] has eigenvalues u_i + u_j. Thus, area-decreasing ⇔ positivity of S^[2].
- By Hamilton's maximum principle to show the positivity of $S^{[2]}$.

Application I

Let N_1, N_2 : cpt. dim $N_1 \ge 2$. Suppose $\exists g, h$ such that $K_{N_1(g)} > 0$ and $K_{N_2(h)} \le 0$. Then any map from N_1 to N_2 must be homotopic to a constant map.

Proof.

- ▶ For $f: (N_1, g) \to (N_2, h)$, its SVD of df has sing. values $\{\lambda_i\}_{i=1}^n$.
- Since N_1 : cpt., \exists a positive constant L such that $\lambda_i \lambda_j \leq L$.
- ▶ Define $\bar{g} = 2Lg$. The singular values of df w.r.t. \bar{g} and h will be $\{\bar{\lambda}_i = \frac{\lambda_i}{\sqrt{2L}}\}_{i=1}^n$.
- ▶ Therefore, we have $\bar{\lambda}_i \bar{\lambda}_j \leq \frac{1}{2} < 1$ and $K_{N_1(\bar{g})} > 0$. Applying the MCF to the graph of f to get the conclusion.

Application II

2-dilation of a map f between N_1 and N_2 is said at most D if f maps each 2-dim. submanifold in N_1 with volume V to an image with volume at most DV.

Corollary

Let $(N_1, g), (N_2, h)$: cpt. with $K_{N_1(g)} \ge k_1, K_{N_2(h)} \le k_2, k_1, k_2$: constants. If 2-dilation of $f : (N_1, g) \to (N_2, h)$ is less than $\frac{k_1}{k_2}$, then f is homotopic to a constant map.

Proof.

Consider $\bar{g} = k_1 g$ and $\bar{h} = k_2 h$. Then $K_{N_1(\bar{g})} \ge 1, K_{N_2(\bar{h})} \le 1$, and $f: (N_1, \bar{g}) \to (N_2, \bar{h})$ satisfies $|\wedge^2 df| < \frac{k_1}{k_2} \frac{k_2}{k_1} = 1$: area-decreasing.

Thank You.