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The mean curvature flow of compact submanifolds in higher codimension

Mean curvature flow (MCF) in Riemannian manifolds.

◮ (Nn
1 , g) and (Nm

2 , h): compact Riemannian manifolds.

◮ f : N1 → N2 a smooth map. Denote Σ = (x, f(x)): the graph of f .

◮ Σ: embedded submfd in M = N1 ×N2 with F = id.× f : N1 → M .

◮ MCF of Σ is a smooth family Ft : N1 → M satisfying











(

∂Ft(x)

∂t

)⊥
= H(x, t)

F0(N1) = Σ

H : mean curvature vector of Ft(N1) = Σt.

(·)⊥: projection onto the normal bundle NΣt of Σt.

◮ By standard PDE theory, the flow has short time existence.
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The mean curvature flow of compact submanifolds in higher codimension

Results

Theorem (K.-W. Lee, Y.-I. Lee)

Let f : (N1, g,KN1 ≥ k1) → (N2, h,KN2 ≤ k2).

Suppose either k1 ≥ 0, k2 ≤ 0, or k1 ≥ k2 > 0.

If
det((g+f∗h)ij)

det(gij)
< 4, or f : area decreasing map, then

(i) The graph of f is preserved along MCF; long time existence.

(ii) If k1 > 0 (locally symmetric), then f converges to a constant map.

Remark

In Tsui and Wang’s paper, constant curvature, k1 ≥ |k2|, and det < 2.
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The mean curvature flow of compact submanifolds in higher codimension

Parallel n-form Ω on M (∇MΩ = 0); evolution equation

◮ Choose o.n. frames {ei}ni=1 for TΣt and {eα}n+m
α=n+1 on NΣt.

◮ Ω1···n = Ω(e1, . . . , en) satisfies

∂

∂t
Ω1···n =∆Ω1···n +Ω1···n





∑

α,i,k

(hα
ik)

2





− 2
∑

α<β,k

(

Ωαβ3···nh
α
1kh

β
2k + · · ·+Ω1···(n−2)αβh

α
(n−1)kh

β
nk

)

−
∑

α,k

(

Ωα2···nRαkk1 + · · ·+Ω1···(n−1)αRαkkn

)

∆: time-dependent Laplacian on Σt. hα
ij = 〈∇M

ei
ej , eα〉.

R: the curvature tensor of M = N1 ×N2 with g + h.
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A special parallel n-form

◮ Since M = N1 ×N2, the volume form Ω1 of N1 can be extended as

a parallel n-form on M .

◮ At p on Σt, we have ∗Ω = Ω1(e1, . . . , en) = Ω1(π1(e1), . . . , π1(en)).

Jacobian of the projection from TpΣt to Tπ1(p)N1.

◮ By the implicit function theorem, we know

∗Ω > 0 near p ⇐⇒ Σt is locally a graph over N1 near p.
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Singular value decomposition theorem

Theorem

[A]m×n = [U ]m×m[Λ]m×n

[

V T
]

n×n
.

◮ U, V : orthogonal.

◮ Λ: diagonal, and

◮ Λii = λi, λ1 ≥ · · · ≥ λr > 0, r = rank A.

◮ Λii = 0 ∀ i = r + 1, . . . ,min{m, n}.

Remark
A = UΛV T ⇔ AV = UΛ ⇔ Avi = λiui.
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Singular value decomposition theorem (continued)

◮ Apply SVD to dft : Tπ1(p)N1 → Tπ2(p)N2, ∃ o.n. basis {ai}ni=1 for

Tπ1(p)N1 and {aα}n+m
α=n+1 for Tπ2(p)N2 such that

dft(ai) = λian+i for 1 ≤ i ≤ r, and dft(ai) = 0 for r ≤ i ≤ n.

◮ Get special o.n. bases {Ei}ni=1 on TpΣt and {Eα}n+m
α=n+1 on NpΣt:

Ei =

{

1√
1+λ2

i

(ai + λian+i) if 1 ≤ i ≤ r

ai if r + 1 ≤ i ≤ n,

En+q =

{

1√
1+λ2

q

(an+q − λqaq) if 1 ≤ q ≤ r

an+q if r + 1 ≤ q ≤ m,

◮ Thus,
∗Ω = Ω1(π1(E1), . . . , π1(En)) =

1
√
∏n

i=1(1 + λ2
i )
.
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Lemma (Evolution Equation for ∗Ω, M.-T. Wang)

If the MCF of Σ is a graph over N1, then ∗Ω satisfies:

∂

∂t
∗Ω =∆ ∗Ω+ ∗Ω|A|2 + ∗Ω







2
∑

k,i<j

λiλjh
n+j
ik hn+i

jk − 2
∑

k,i<j

λiλjh
n+i
ik hn+j

jk







+ ∗Ω
∑

i,k

(

λ2
i

(1 + λ2
i )(1 + λ2

k)
〈R1(ak, ai)ak, ai〉

− λ2
i λ

2
k

(1 + λ2
i )(1 + λ2

k)
〈R2(an+k, an+i)an+k, an+i〉

)

where |A|2: norm square of the second fundamental form, and

R1, R2: curvature tensors on (N1, g), (N2, h), respectively.
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Lemma (Evolution Eqn. for ln ∗Ω, M.-P. Tsui; M.-T. Wang.)

The evolution equation can be rewritten as the form:

∂

∂t
ln ∗Ω =∆ ln ∗Ω+ |A|2 +

∑

i,k

λ2
i

(

hn+i
ik

)2
+ 2

∑

k,i<j

λiλjh
n+j
ik hn+i

jk

+
∑

i,k

(

λ2
i

(1 + λ2
i ) (1 + λ2

k)
〈R1(ak, ai)ak, ai〉

− λ2
iλ

2
k

(1 + λ2
i ) (1 + λ2

k)
〈R2(an+k, an+i)an+k, an+i〉

)
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Results

Theorem (K.-W. Lee, Y.-I. Lee)

Let f : (N1, g,KN1 ≥ k1) → (N2, h,KN2 ≤ k2).

Suppose either k1 ≥ 0, k2 ≤ 0, or k1 ≥ k2 > 0.

If
det((g+f∗h)ij)

det(gij)
< 4, or f : area decreasing map, then

(i) The graph of f is preserved along MCF; long time existence.

(ii) If k1 > 0 (locally symmetric), then f converges to a constant map.

Remark

∗Ω =

√

det(gij)
√

det((g + f∗h)ij)
=

1
√
∏n

i=1 (1 + λ2
i )

>
1

2
at t = 0.
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Proof of (i)
∂

∂t
ln ∗Ω = ∆ ln ∗Ω+ I+ II, where

I = second fundamental form terms

=|A|2 + Σ
i,k

λ2
i

(

hn+i
ik

)2
+ 2 Σ

k,i<j
λiλjh

n+j
ik hn+i

jk

II = curvature tensor terms

=
∑

i,k

(

λ2
i

(1+λ2
i )(1+λ2

k)
〈R1(ak,ai)ak,ai〉−

λ2
i
λ2
k

(1+λ2
i )(1+λ2

k)
〈R2(an+k,an+i)an+k,an+i〉

)

=
∑

i,k 6=i

(

λ2
i

(1+λ2
i )(1+λ2

k)
KN1(ak,ai)−

λ2
i
λ2
k

(1+λ2
i )(1+λ2

k)
KN2(an+k,an+i)

)

Remark
R(X,Y )Z = −∇X∇Y Z +∇Y ∇XZ +∇[X,Y ]Z

Rijkl = 〈R(ek, el)ei, ej〉
K(ek, ei) = 〈R(ek, ei)ek, ei〉, where {ei} are orthonormal.
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The “graph” property is preserved by MCF.

◮ Goal: there exists δ > 0 such that

∂

∂t
ln ∗Ω ≥ ∆ ln ∗Ω+ δ|A|2,

by the maximum principle,

minΣt
ln ∗Ω is nondecreasing in t, ⇒ ∗Ω ≥ minΣt=0 ∗Ω > 0.

Thus Σt remains the graph of a map ft : N1 → N2 whenever the

flow exists.

◮ At t = 0,
det((g + f∗h)ij)

det(gij)
=

n
∏

i=1

(

1 + λ2
i

)

< 4.

◮ N1: cpt. Assumption ⇒
n
∏

i=1

(

1 + λ2
i

)

≤ 4− ε on Σt=0 for ε > 0.
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Proof of the evolution inequality.

◮ By continuity and short time existence, the solution remains the

graph and
∏n

i=1

(

1 + λ2
i

)

≤ 4− ε
2 for small t.

◮ In particular, when i 6= j,
(

1 + λ2
i

)

(1 + λ2
j) ≤ 4− ε

2 . By mean

inequality, we have |λiλj | ≤ 1− δ for δ = ε
8 > 0, i 6= j.

◮ Thus

I ≥δ|A|2 + (1 − δ)
∑

i,j,k

(

hn+i
jk

)2

− 2(1− δ)
∑

k,i<j

∣

∣

∣hn+i
jk hn+j

ik

∣

∣

∣

≥δ|A|2 + (1 − δ)
∑

k,i<j

(∣

∣

∣
hn+i
jk

∣

∣

∣
−
∣

∣

∣
hn+j
ik

∣

∣

∣

)2

≥δ|A|2.
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For curvature tensor terms,

(a) If k1 ≥ 0, k2 ≤ 0, we have

II ≥
∑

i,k 6=i

(

λ2
i

(1 + λ2
i ) (1 + λ2

k)
k1 −

λ2
iλ

2
k

(1 + λ2
i ) (1 + λ2

k)
k2

)

≥ 0.

(b) If k1 ≥ k2 > 0, then

II ≥
∑

i,k 6=i

(

λ2
i

(1 + λ2
i ) (1 + λ2

k)
k1 −

λ2
iλ

2
k

(1 + λ2
i ) (1 + λ2

k)
k2

)

≥
∑

i,k 6=i

(

λ2
i − λ2

iλ
2
k

(1 + λ2
i ) (1 + λ2

k)

)

k2 =
∑

i<k

(

λ2
i + λ2

k − 2λ2
iλ

2
k

(1 + λ2
i ) (1 + λ2

k)

)

k2

Since |λiλk| < 1, λ2
i + λ2

k − 2λ2
i λ

2
k = (λi − λk)

2 + 2λiλk − 2λ2
iλ

2
k =

(λi − λk)
2 + 2λiλk(1− λiλk) ≥ 0.

Hence II ≥ 0.
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Long time existence

Definiton

A regular point is a point where the second fundamental form is locally

bounded in 2, α-Hölder norm.

Theorem (B. White’s regularity theorem)

There is an ε = ε(n,m, α) > 0 such that whenever

lim
t→t0

∫

Σt

ρy0,t0dµt < 1 + ε,

it can concluded that (y0, t0) is a regular point.

In our case, we need to define ρy0,t0 , and “calculate” lim
t→t0

∫

Σt
ρy0,t0dµt.
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Isometrically embedding theorem

Theorem (Nash)

There are isometric embeddings in R
N , N = n

2 (3n+ 11), of any compact

n-dimensional Riemannian manifold.

◮ We isometrically embed M = N1 ×N2 into R
N .

◮ The MCF equation F (x, t) in R
N becomes

∂

∂t
F (x, t) = H = H̄ + E,

where H ∈ TM/TΣt: mean curvature of Σt in M , and

H̄ ∈ TRN/TΣt: mean curvature of Σt in R
N .
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n-dimensional backward heat kernel (Huisken)

The backward heat kernel ρy0,t0 at (y0, t0) is

ρy0,t0 =
1

(4π(t0 − t))
n
2
e
− |y−y0 |2

4(t0−t) .

◮
∂
∂t
ρy0,t0 = −∆ρy0,t0 − ρy0,t0

(

|F⊥|2
4(t0−t)2 + F⊥·H̄

t0−t
+ F⊥·E

2(t0−t)

)

, where

F ∈ TRN/TΣt.

◮ The monotonicity formula asserts lim
t→t0

∫

Σt
ρy0,t0dµt exists.

◮ We hope to show lim
t→t0

∫

Σt
ρy0,t0dµt = 1. However, it is hard to

calculate the value directly.
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Parabolic dilation

Consider the parabolic dilation Dλ at (y0, t0), that is,

(y, t)
Dλ7−→ (λ(y − y0), λ

2(t− t0)),

and set s = λ2(t− t0). Denote the corresponding submanifold and

volume form after dilation by Σλ
s and dµλ

s respectively.

◮ E-almost Brakke flow: view a submanifold as a Radon measure.

◮ Tangent flow: if the parabolic dilation sequence of E-almost Brakke

flow Σλ
s converges to a limit Σ∞

−1, this limit is called a tangent flow

at (y0, t0).

◮ Ilmanen shows the existence of tangent flow.

Kuo-Wei Lee Institute of Mathematics, Academia Sinica The mean curvature flow of compact submanifolds in higher codimension
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Show (y0, t0) is a regular point

The quantity

lim
t→t0

∫

Σt

ρy0,t0dµt = lim
j→∞

∫

Σtj

ρy0,t0dµt0+
sj

λ2
j

(1)
= lim

j→∞

∫

Σ
λj
sj

ρ0,0dµ
λj

sj

(2)
=

∫

Σ∞
−1

ρ0,0dµ
∞
−1 =

1

(4π)
n
2

∫

Σ∞
−1

exp

(

−|F∞
−1|2
4

)

dµ∞
−1 = 1.

(1) ρ0,0 = 1
λn ρy0,t0 , dµ

λ
s = λndµt.

(2) We need: Σ
λj

sj → Σ∞
−1 as Radon measure and Σ∞

−1 is the graph of a

linear function.
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Convergence

◮ Goal: there exists c0 > 0 which depends on ε, k1, n such that

II ≥ c0

n
∑

i=1

λ2
i ≥ c0 ln

(

n
∏

i=1

(

1 + λ2
i

)

)

= −2c0 ln ∗Ω.

Then ∂

∂t
ln ∗Ω ≥ ∆ ln ∗Ω− 2c0 ln ∗Ω.

◮ ∗Ω → 1 as t → ∞.

◮ |A| → 0 as t → ∞.

◮ |df | → 0 as t → ∞.

Kuo-Wei Lee Institute of Mathematics, Academia Sinica The mean curvature flow of compact submanifolds in higher codimension
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Proof of (ii)

Goal: Find c0 > 0 such that II ≥ c0
n
∑

i=1

λ2
i .

(a) If k1 > 0, and k2 ≤ 0, we have

II ≥
∑

i,k 6=i

(

λ2
i

(1 + λ2
i ) (1 + λ2

k)
k1 −

λ2
i λ

2
k

(1 + λ2
i ) (1 + λ2

k)
k2

)

≥
∑

i,k 6=i

λ2
i k1

(1 + λ2
i ) (1 + λ2

k)
≥ k1(n− 1)

4

n
∑

i=1

λ2
i

This is because
1

(1 + λ2
i ) (1 + λ2

k)
≥ 1
∏n

i=1 (1 + λ2
i )

≥ 1

4
.

Hence we can take c0 =
k1(n− 1)

4
.
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(b) If k1 ≥ k2 > 0, recall

II ≥
∑

i,k 6=i

(

λ2
i

(1 + λ2
i ) (1 + λ2

k)
k1 −

λ2
iλ

2
k

(1 + λ2
i ) (1 + λ2

k)
k2

)

≥
∑

i,k 6=i

(

λ2
i − λ2

iλ
2
k

(1 + λ2
i ) (1 + λ2

k)

)

k1 =
∑

i<k

(

λ2
i + λ2

k − 2λ2
iλ

2
k

(1 + λ2
i ) (1 + λ2

k)

)

k1

As the proof (i), we have |λiλk| < 1− ε
4 for all t ≥ 0. Thus,

λ2
i + λ2

k − 2λ2
iλ

2
k = λiλk(λi − λk)

2 + (1− λiλk)(λ
2
i + λ2

k) ≥
ε

4
(λ2

i + λ2
k)

Therefore,

II ≥ εk1
16

∑

i<k

(λ2
i + λ2

k) =
εk1(n− 1)

16

n
∑

i=1

λ2
i .

We can take c0 =
εk1(n− 1)

16
.
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Claim: ∗Ω → 1 as t → ∞
∂

∂t
ln ∗Ω ≥ ∆ ln ∗Ω− 2c0 ln ∗Ω

Consider a function f(t) which depends only on t and satisfies

{

d
dtf(t) = −2c0f(t)

f(0) = min
Σt=0

ln ∗Ω ⇒ f(t) = f(0)e−2c0t.

Then ∂

∂t
(ln ∗Ω− f(t)) ≥ ∆(ln ∗Ω− f(t))− 2c0(ln ∗Ω− f(t)).

By the maximum principle, because min
Σt=0

(ln ∗Ω− f(t)) ≥ 0, we have

min
Σt>0

(ln ∗Ω− f(t)) ≥ 0

⇒ 0 ≥ ln ∗Ω ≥ f(0)e−2c0t on Σt≥0 ⇒ ∗Ω → 1 as t → ∞.
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Claim: |A| → 0 as t → ∞. (locally symmetric case)

∂

∂t
|A|2 =∆|A|2 − 2|∇A|2 + 2

(

(∇M
∂k
R)αijk + (∇M

∂j
R)αkik

)

hα
ij

− 4Rlijkh
α
lkh

α
ij + 8Rαβjkh

β
ikh

α
ij − 4Rlkikh

α
ljh

α
ij + 2Rαkβkh

β
ijh

α
ij

+ 2 Σ
α,γ,i,m

(Σ
k
(hα

ikh
γ
mk − hα

mkh
γ
ik))

2 + 2 Σ
i,j,m,k

(Σ
α
hα
ijh

α
mk)

2

≤∆|A|2 − 2|∇A|2 +K1|A|4 +K2|A|2.

The K1|A|4 term will cause some trouble, so we consider

∂

∂t

(

(∗Ω)−2p|A|2
)

≤∆
(

(∗Ω)−2p|A|2
)

− (∗Ω)−2p∇
(

(∗Ω)−2p
)

· ∇
(

(∗Ω)−2p|A|2
)

+ (∗Ω)−2p
(

|A|4 (K1 − p+ 2p(p− 1)nε1) +K2|A|2
)

.

(Given ε1 > 0, there exists T such that ∗Ω > 1√
1+ε1

for t > T .)
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The mean curvature flow of compact submanifolds in higher codimension

◮ Choose ε1 small, and a suitable p = p(n, ε1) ∼ 1√
ε1

such that the

coefficient of the highest order nonlinear term is negative.

◮ Max. principle, (dfdt = −K3f
2 +K2f, f(0) = max

t=0
(∗Ω)−2p|A|2),

one gets

(∗Ω)−2p|A|2 ≤ K2

( 1√
1+ε1

)
1+
√

1+ 1
nε1 ( 1√

2nε1
−K1 − 1)

→ 0 as t → ∞.

◮ It implies that the mean curvature flow of Σ converges to a totally

geodesic submanifold of M .

◮ Since ∗Ω → 1 as t → ∞, we have |dft| → 0 and the limit is a

constant map.
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Claim: |A| → 0 as t → ∞. (without locally symmetric)

◮ N1: compact ⇒ |∇MR|: bounded. Then

∂

∂t
|A|2 ≤ ∆|A|2 − 2|∇A|2 +K1|A|4 +K2|A|2 +K3.

◮ |A|2: uniform bounded in space and time.

◮ Show d
dt

∫

Σt
|A|2dµt ≤ C and

∫∞
0

∫

Σt
|A|2dµtdt < ∞. Then

∫

Σt

|A|2dµt → 0 as t → ∞.

◮ By small ε-regularity theorem (Ilmanen)
?⇒ supΣt

|A|2 → 0

uniformly as t → ∞.
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Area decreasing case

◮ A map f : N1 → N2 is area-decreasing if

| ∧2 df |(x) = sup
|u∧v|=1

|df(u) ∧ df(v)| < 1 ⇔ |λiλj | < 1 ∀ i 6= j.

◮ Take parallel tensor S(X,Y ) = g(π1(X), π1(Y ))−h(π2(X), π2(Y )).

◮ By SVD, we have

S = S(Ei, Ej)1≤i,j≤n+m =











B 0 D 0

0 I(n−r)·(n−r) 0 0

D 0 −B 0

0 0 0 −I(m−r)·(m−r)











,

Bij = S(Ei, Ej) =
1− λ2

i

1 + λ2
i

δij , Dij = S(Ei, En+j) = − 2λi

1 + λ2
i

δij
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Area decreasing case (continued)

◮ The sum of two eigenvalue of S is

1− λ2
i

1 + λ2
i

+
1− λ2

j

1 + λ2
j

=
2(1− λ2

iλ
2
j)

(1 + λ2
i )(1 + λ2

j)

◮ Define S[2](w1 ∧ w2) = S(w1) ∧ w2 + w1 ∧ S(w2). Then S[2] has

eigenvalues ui + uj . Thus, area-decreasing ⇔ positivity of S[2].

◮ By Hamilton’s maximum principle to show the positivity of S[2].
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Application I

Let N1, N2: cpt. dim N1 ≥ 2. Suppose ∃g, h such that KN1(g) > 0 and

KN2(h) ≤ 0. Then any map from N1 to N2 must be homotopic to a

constant map.

Proof.

◮ For f : (N1, g) → (N2, h), its SVD of df has sing. values {λi}ni=1.

◮ Since N1: cpt., ∃ a positive constant L such that λiλj ≤ L.

◮ Define ḡ = 2Lg. The singular values of df w.r.t. ḡ and h will be

{λ̄i =
λi√
2L

}ni=1.

◮ Therefore, we have λ̄iλ̄j ≤ 1
2 < 1 and KN1(ḡ) > 0. Applying the

MCF to the graph of f to get the conclusion.
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Application II

2-dilation of a map f between N1 and N2 is said at most D if f maps

each 2-dim. submanifold in N1 with volume V to an image with volume

at most DV .

Corollary
Let (N1, g), (N2, h): cpt. with KN1(g) ≥ k1,KN2(h) ≤ k2, k1, k2:

constants. If 2-dilation of f : (N1, g) → (N2, h) is less than
k1

k2
, then f is

homotopic to a constant map.

Proof.
Consider ḡ = k1g and h̄ = k2h. Then KN1(ḡ) ≥ 1,KN2(h̄) ≤ 1, and

f : (N1, ḡ) → (N2, h̄) satisfies | ∧2 df | < k1

k2

k2

k1
= 1: area-decreasing.
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Thank You.
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