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Mean curvature flow (MCF) in Riemannian manifolds.

> (N7, g) and (N3*, h): compact Riemannian manifolds.
» f: Ny — Ny a smooth map. Denote ¥ = (x, f(x)): the graph of f.
» Y. embedded submfd in M = Ny x Ny with FF=id. x f: Ny — M.
» MCF of ¥ is a smooth family F} : Ny — M satisfying

(52) e

Fy(N) =X

H: mean curvature vector of F;(N7) = X;.
(-)*: projection onto the normal bundle N¥; of 3.

» By standard PDE theory, the flow has short time existence.
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Results

Theorem (K.-W. Lee, Y.-I. Lee)
Let f : (Nl,g,KNl > kl) — (Ng,h,KNz < kg)

Suppose either k1 > 0,ky <0, or k1 > ko > 0.

If detlog+f"h)iz)

det(or) < 4, or f: area decreasing map, then

(i) The graph of f is preserved along MCF; long time existence.

(ii) If k1 > 0 (locally symmetric), then f converges to a constant map.

Remark

In Tsui and Wang's paper, constant curvature, k1 > |kz|, and det < 2.
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Parallel n-form Q on M (V*Q = 0); evolution equation

» Choose o.n. frames {e;}7; for TS, and {eq}nt"", | on NS,

> Q... = Q(eq, ..., e,) satisfies

0
o tn =A%+ Q1 > (hg)?
i,k
=2 3" (QapsnhSihG + e+ D u2jashi ki)
a<p,k
- Z a2--n akkl +-+ Q1 Rakkn)

A: time-dependent Laplacian on X;. hi; = (Vé‘fej,ea>.
R: the curvature tensor of M = Ny x Ny with g + h.
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A special parallel n-form

» Since M = N; x N», the volume form €7 of N; can be extended as
a parallel n-form on M.

> At pon X, we have *Q = Qq(e1,...,e,) = Qi(mi(e1),...,m(en)).
Jacobian of the projection from T},%; to Ty (,)N1.

» By the implicit function theorem, we know
x€) > 0 near p <= X, is locally a graph over N near p.
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Singular value decomposition theorem

Theorem

[A]mxn = [U]me[A]mxn [VT]

nxn "

» U,V : orthogonal.
» A: diagonal, and

> Ay =Xi, M1 > >\ >0, 7 = rank A.
» Ay =0 Vi=r+1,..., min{m,n}.

Remark
A=UAVT & AV = UA & Av; = \u,.
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Singular value decomposition theorem (continued)

> Apply SVD to df; : T, (pyN1 = Try(p) N2, 3 0.n. basis {a;}i,
Tr,(p) N1 and {aa}a mi1 for Try () N2 such that

dfi(a;) = Nianys for 1<i<r, and dfi(a;) =0 for r <i <n.

> Get special o.n. bases {E;}7 ; on T,%; and {E, Zi:;ﬂ on N,3;:
E, = m(al + )‘zan+z) if 1 <:1<r

@i if r+1<i<n,
—MNag) if 1<g<r

1 (a
T +
En+q = { vV 1+)‘3 o

Ontq if r+1<qg<m,

» Thus, 1

x() = Ql(ﬂ'l(El),...,Trl(En)) = \/ﬁ
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Lemma (Evolution Equation for (2, M.-T. Wang)

If the MCF of % is a graph over N1, then %) satisfies:

g*g =A«Q+ QAP + 502 Y T NN R R =2 " R R
k,i<j k,i<j
Q 71 L 2Z2V(1 L 22\ i s Qi
o Z<1+A2 1+A§)<R1(ak’a)aka>

AZA2
——(1 +)\g3(1 +)\z><R2(an+kaan+i)an+k7an+i>>
K3

where |A|?: norm square of the second fundamental form, and
Ry, Ro: curvature tensors on (Ny,g), (Na, h), respectively.
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Lemma (Evolution Eqn. for In xQ, M.-P. Tsui; M.-T. Wang.)

The evolution equation can be rewritten as the form:

gln*Q AIH*Q+|A|2+Z)\2 hn"rl +2 Z /\/\ hTH‘J n+i

ik k,i<j
+Z ( 14-/\2 —|—)\%)<R1(ak’ai)akvai>
)\12)\%

- (1 + /\3) (1 T )\i) <R2(an+kvan+i)an+kaan+i>>
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Results
Theorem (K.-W. Lee, Y.-I. Lee)

Let f : (Nl,g,KNl > kl) — (NQ,h,KN2 < k‘g)
Suppose either k1 > 0,ky <0, or ky > ko > 0.

If %ﬁ;’;m < 4, or f: area decreasing map, then

(i) The graph of f is preserved along MCF; long time existence.

(ii) If k1 > 0 (locally symmetric), then f converges to a constant map.

Remark

o det(gij) o 1
CVAet((g+ PRy VT, A+ A

*()

>
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Proof of (i)

&ln*Qz AlnxQ+ 1+ 11, where

| = second fundamental form terms

|A]? +2 A2 (W) 42 2 NiNh

Il = curvature tensor terms

=> L(R (ak,ai)ak,ai)—
sy ) 1(ak,ai)ak,a;

>\12>\2 < ( ) >
Rs(a . .
z Z)(1 32 ) 2(An+k;An+i)0nt+k,An+i

oD (1)

A2 AZx2
= ————K ay,a;)— z K a Anti
R\ T () )T R gy e ()

Remark
R(X,Y)Z = -VxVyZ +VyVxZ +Vixy|Z

z]k:l < ( )61,6]>

K(ek,e;) = (R(ek, ei)ex, e;), where {e;} are orthonormal.
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The “graph” property is preserved by MCF.

» Goal: there exists 6 > 0 such that

%ln #Q > Aln+Q + §|AJ?,

by the maximum principle,
miny, In %€ is nondecreasing in ¢, = *{2 > miny,_, *Q > 0.
Thus 3; remains the graph of a map f; : Ny — N3 whenever the

flow exists.

det((g+ f*h); .
» At t =0, —] 1 + /\2
det(gi;) };[1

n
» Ni: cpt. Assumption = [] (1 + )\f) <4 —¢on X;—g fore > 0.
i=1
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Proof of the evolution inequality.

» By continuity and short time existence, the solution remains the
graph and ]!, (1+ A7) <4 — £ for small ¢.

> In particular, when i # j, (1+ A7) (1+ A%) <4—5. By mean
inequality, we have [A\;\;j| <1 —4dford =g >0,i#j.
> Thus
125142+ (1-8) (h”*’) —201-6) Y h"“h"”‘

1,5,k k,i<j

204+ (1-8) 3 ( h?ﬁ\f

k,i<j

n4+1
hjk -

>3] A%
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For curvature tensor terms,

(a) If k1 > 0,ks <0, we have

A2\2
1> 2)2 .
z%;z< 14+ 22) 1+>\2)k (1+/\§)(1+)\§>k2> >0

(b) If k1 > ko > 0, then

¥ AZ)2
>3 ((1+)\2)(1+)\2)k1 - (1+A§)(1+A§)k2>

i, ki
)\2)\2 A2 402 — 22202
ko = ) k ) k)k
—%< ) 1+Az>> ’ §<<1+A3><1+Az> ’

Since [Nk < 1, A2+ 22 — 202202 = (\; — \p)? + 200 — 2202 =
(A — M) 4+ 206 (1 — Xidg) > 0.
Hence Il > 0.
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Long time existence

Definiton

A regular point is a point where the second fundamental form is locally
bounded in 2, a-Holder norm.

Theorem (B. White's regularity theorem)

There is an € = £(n, m, o) > 0 such that whenever

tllglo s, pyo,tod,u't <1+ g,

it can concluded that (yo,to) is a regular point.

In our case, we need to define py, +,, and “calculate tll)n%) fEt Puyo,tod it
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Isometrically embedding theorem

Theorem (Nash)

There are isometric embeddings in RN, N = %(3n + 11), of any compact
n-dimensional Riemannian manifold.

> We isometrically embed M = N; x N into RY.
» The MCF equation F(x,t) in RN becomes

O pat)y=H=H+FE
6t bl - - 9

where H € TM/T%;: mean curvature of ¥; in M, and
H € TRY/TY;: mean curvature of 3; in RY.
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n-dimensional backward heat kernel (Huisken)

The backward heat kernel py, +, at (yo,to) is

1 _ly—wol?

= — € 4(to—t) |
Pvorto = Uan(ty — 1)) %

P} L2 17 1
> 5iPyoto = —LPyote = Pyo.to <4(‘t0_|t)2 + Izo_f + 21(10_Et)>, where
F e TRYN/TY,.

» The monotonicity formula asserts tlin? fzt Puyo.todts exists.
—to

» We hope to show tllglo s, Puo.todie = 1. However, it is hard to

calculate the value directly.
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Parabolic dilation

Consider the parabolic dilation D) at (yo, o), that is,

(1) 2 (A(y — o), A2(t — to)),

and set s = A2(t — t(). Denote the corresponding submanifold and
volume form after dilation by ¥} and du? respectively.

» FE-almost Brakke flow: view a submanifold as a Radon measure.

» Tangent flow: if the parabolic dilation sequence of E-almost Brakke
flow X2 converges to a limit ¥°, this limit is called a tangent flow
at (yo,to).

» limanen shows the existence of tangent flow.
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Show (yo, to) is a regular point

The quantity

t—to

2 1 F>|?
(:)/ po,oduy = —ﬂ/ eXp < | | )d,u—1 =L
=, (4m)2 Jox, 4

(1) £0,0 = 37 Pyostor dpd = Ndpae.
(2) We need: Ei‘j — 3% as Radon measure and X is the graph of a
linear function.

lim ﬂyo,todm— Jim / PuostoGityy 2y = T [ poodug
J
Sj
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Convergence

» Goal: there exists ¢y > 0 which depends on ¢, k1, n such that

IIZCOZA?ZCOIH H(l—l—)\?) = —2¢oIn x2.
i=1 i=1
Then 2 In*Q > Aln*Q — 2¢o In Q.

ot

» x(Q - 1ast— oo.

» [Al - 0ast— oo.

> |df| = 0ast— .
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Goal: Find ¢y > 0 such that Il > ¢ Y 2.

=1

(a) If k1 >0, and ks <0, we have

A2 AZ)2
> K _ 1
122 ((1+A3>(1+A%>k1 (1+A?)(1+A%)k2>

i, ki
/\ kl k1(n — 1) i 2
35 > By
2 2\ = )
ywh T+X) 1+ A) 4 e
1 1 1
This is because > —= > —.
T+ A+ T ILL, 0+ X)) ~ 4
kl(n - ].)

Hence we can take ¢g = 1
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(b) If ky > k2 > 0, recall

¥ A2\
=D ((1+)\2)(1+)\2)k1 - (1+A§)(1+A§)k2>

i,k#i
AINZ ) ()3 + A2 —2)2)2
> kl — i k 4 k) kl
Zkz#z<].+)\2 1+/\z) sz (1+X2)(1+X2)

As the proof (i), we have [A\;Ax| <1 — £ forall ¢ > 0. Thus,
M4 A2 220202 = AN = A2+ (1= ) (A2 +03) > Z(/\f +22)

Therefore, ] Fn(n — 1) "
ER1 2 2 ER 2
> - Z,
. 16 Z()\ + i) = 16 Z)\Z
i<k =1
Ek)l (TL — 1)

W tak =
e can take ¢g 16
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%ID*Q > Aln*Q — 2¢9 In %)

Consider a function f(t) which depends only on t and satisfies

{ dt () _2COf()

£(0) Etué In 2

= f(t) = f(0)e"%t.

Then %(ln +Q — f(1)) 2 A(lnxQ = f(t)) — 2co(In*2 — f(t)).

By the maximum principle, because gin(ln *Q — f(t)) > 0, we have
t=0

min(InxQ — f(¢)) >0

Ziso0

= 0> 1InxQ > f(0)e” 2" on Ty5g = *Q — 1 as t — c0.
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Claim: |A| — 0 as t — oo. (locally symmetric case)

B
A2 =AJA[2 = 2| VAP +2 (V3] R)aize + (T R)aix ) b5
4Rl”kh ha + 8Ra,3jkhfkh% — 4leikhl] ij + 2Rak6khwh”
+2 % (S(hfhy — hophd)? 2 5 (ShhT)?

avim k ijmk o

<AJA]? = 2|VAP? + K| Al* + Ka| A

The K1|A|* term will cause some trouble, so we consider

8 —<p
= ()7 |aP)

<A ((*Q)_2p|A|2) — (xQ)7?PV ((*Q)_2p) -V ((*Q)_2p|A|2)
+ (xQ) 7% (|A|4 (K1 —p+2p(p—1)ner) + K2|A|2) .

(Given €1 > 0, there exists T' such that *Q > fort>T.)

1
V1+er
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» Choose 1 small, and a suitable p = p(n,e1) ~ \/% such that the
coefficient of the highest order nonlinear term is negative.

» Max. principle, (‘é—{ =—Ks3f*+ Kof, f(0) = Y{I_agi(*Q)_%MF):

one gets
K>
Q)42 < — t — oo.
(* ) | | — 1 1+m . K ) 0 as o0
(\/1+51) (\/2n61 o 1= )

> It implies that the mean curvature flow of ¥ converges to a totally
geodesic submanifold of M.

> Since *Q — 1 as t — oo, we have |df;| — 0 and the limit is a
constant map.
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Claim: |A| — 0 as t — oco. (without locally symmetric)

v

Ni: compact = |[VMR|: bounded. Then

O |A1 < AJAP ~ 2AVAR + KyJAJ + Kol AP + K,

v

|A|: uniform bounded in space and time.

Show $ [, |A[Pdu < C and [[° [, |A]*dudt < co. Then

v

/|A|2dut—>0 as ¢t — o0.
3t

v

By small e-regularity theorem (limanen) = supy, |A[* =0
uniformly as t — oo.
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Area decreasing case

» A map f: Ny — Ns is area-decreasing if

[ A?df(x) = sup [df(u) Adf(v)] <& [Nd| <1V i)

JluAv|=1

» Take parallel tensor S(X,Y) = g(m1(X), m1(Y)) — h(m(X), m2(Y)).
» By SVD, we have

B 0 D 0
0 Tinp).(n— 0 0
S = 5(Bi, Ej)i<ij<ntm = ()
( J)ls \J<n+ D 0 _RB 0
0 0 0 —Im—r)-(m—n)
N2 2
Bi; = S(Ei, E;) = H)\zaw, Dij = S(E;, Enytj) :—ﬁ&-j
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Area decreasing case (continued)

» The sum of two eigenvalue of S is

11— 1-X2 2(1 - A2A%)

—+ =
1+ A 1+/\2 (T+ ) (1+22)

» Define S (wy Aws) = S(wi) Aws 4wy A S(ws). Then S has
eigenvalues u; 4+ u;. Thus, area-decreasing < positivity of St

» By Hamilton’s maximum principle to show the positivity of S[2I.
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Application |

Let Ny, Na: cpt. dim Ny > 2. Suppose Jg, h such that Ky, (4 > 0 and
Kn,n) <0. Then any map from Ny to No must be homotopic to a

constant map.

Proof.
» For f: (N1,9) — (N2, h), its SVD of df has sing. values {\;}1 ;.
» Since Ni: cpt., 3 a positive constant L such that A;A; < L.

» Define g = 2Lg. The singular values of df w.r.t. g and h will be

{Xi = \/)\;—L}?:r
» Therefore, we have /_\i/_\j < % < 1and Ky, (5 > 0. Applying the
MCF to the graph of f to get the conclusion.
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Application |l

2-dilation of a map f between N; and Ns is said at most D if f maps
each 2-dim. submanifold in N7 with volume V' to an image with volume
at most DV.

Corollary

Let (Nl,g), (NQ, h) cpt. with KN1(g) > klyKNQ(h < kQ, k‘l, kQ.’
constants. If 2-dilation of f : (N1,9) — (Na, h) is less than k—l then f is
homotopic to a constant map.

Proof.
Consider g = k1g and h = koh. Then Ky, > 1, Ky, ) < 1, and
[ (N1,9) — (N2, h) satisfies | A2 df| < kl k2 = 1: area-decreasing. [
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Thank You.
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