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Talk outline

The Euclidean Isoperimetric Problem.

Relevant terminology, conepts, definitions in/of the Heisenberg group
Hn.

The Isoperimetric Problem inHn–Pansu’s Isoperimetric inequality and
conjecture.

Existence of the Isoperimetric Profile in Carnot-Groups:
Leonardi-Rigot.

Smooth Cylindrical Case and some properties of the Isoperimetric
profile: Leonardi-Masnou, Ritoré-Rosales.

Partial Symmetry Case: Danielli-Garofalo-Nhieu.

The C2 solution to the Isoperimetric problem inH1: Ritore-Rosales.

The non-smooth cases: Monti, Monti-Rickly.

An improvement of Danielli-Garofalo-Nhieu due to Ritoré: calibration
argument.
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The Euclidean Isoperimetric Problem.

We begin with the following folklore which attributed the Isoperimetric
Problem to Queen Dido, founder of the city of Carthage in North Africa.

Figure: Dido, Queen of Carthage. Engraving by Mathäus Merian the Elder 1630.

According to Virgil’s saga “Fleeing the vengeance of her brother, Dido
(356-260 BC) lands on the coast of North Africa. For the bargain which Dido
agrees to with a local potentate is this: she may have that portion of land
which she is able to enclose with the hide of a bull. She then cut the hide
into a seris of long thin strips and marked out a vast circumference. This
area then eventually became the city of Carthage”.
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The Euclidean Isoperimetric Problem.

Queen Dido’s problem/solution is a variant of what is now known as
isoperimetric type problems. In more precise term, Dido’s problem is
formulated as follows.

Among all bounded, connected open regions in the plane with a fixed
perimeter, determine the one(s) that has the maximum volume.

The above problem is also equivalent to: Among all bounded,
connected open regions in the plane with a fixed volume, determine
the one(s) that has the minimum perimeter.

Dido’s solution is correct: (although part of her region is bounded by a
sea shore which we assume it to be a straight line when compared to
the relative length of the bull’s hide): the extremal regions are precisely
one half of the open circular planar discs.
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The Euclidean Isoperimetric Problem.

Over the centuries, the isoperimetric problem (in various forms) has
stimulated substantial mathematical research in numerous areas:

Geometric measure theory: The precise setting for the study of
classical questions in the calculus of variations and the proof of
existence of an isoperimetric profile. The tools are compactness
theorems for BV functions. Consequently, a priori solutions are only
guaranteed within the class of sets of finite perimeter.

Differential Geometry: (Smooth) isoperimetric solutions are surfaces
of constant mean curvature. The classification of such surfaces
provides a characterization of isoperimetric profiles.
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The Euclidean Isoperimetric Problem.

PDE: The introduction of dynamic altorihms of volume-constrained
curvature flows which provides a way to smoothly deform a given
region so that the isoperimetric ratio P(E)

n
n−1 /|E| cecreases

monotonically. If the flow exists for all time, the deformed regions
converge, in a suitable sense, to a solution of the isoperimetric
problem.

Functional Analysis: An equivalent way of formulating the
isoperimetric problem consists in viewing it as a best constant
problem for a Sobolev inequality, relating mean values of a given
smooth function with those of its derivatives.

Geometric function theory: Symmetrization procedures that replace a
given mathematical object or region with one admitting a larger
symmetry group while retaining certain properties.
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The Euclidean Isoperimetric Problem.

We recall the classical isoperimetric inequality in the Euclidean space.

Theorem 1

For every Borel setΩ⊂Rn, n ≥ 2, with finite perimeter P(Ω),

min{|Ω|, |Rn \Ω|} ≤ Ciso(Rn)P(Ω)
n

n−1 , (1)

where

Ciso(Rn) = 1

nω
1

n−1
n−1

,

Here, ωk is the surface measure of the unit sphere Sk in Rk+1. Equality holds in
(1) if and only if almost everywhereΩ= B(x,R) (i.e. a ball) for some x ∈Rn and
R > 0. In the case where ∂Ω is smooth say C1 then P(Ω) coincide with surface
measure of ∂Ω. In the non-smooth case P(Ω) = Var(χΩ,Rn) where χΩ is the
indicator function ofΩ and

Var(u) = sup

{∫
Rn

u(x)
n∑

i=1
∂xi Gi dx

∣∣∣Gi ∈ C∞
o (Rn),G2

1 +·· ·+C2
n ≤ 1

}

is the variation of u in Rn. Note thatΩ need not to be bounded in a priori.
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The Euclidean Isoperimetric Problem.

Roughtly speaking, the isoperimetric problem consists in finding the
smallest constant Ciso(Rn) and classifying setsΩ such that inequality (1)
becomes an equality. This problem is equivalent to the two following
formulations:

Among all bounded, connected open sets of fixed perimeter L, find
one with largest volume V .

Among all bounded, connected open sets with fixed volume V , find
one with smallest perimeter L.

Of course, the solution (in R2 anyway) was known long long time ago.
However, it was not until 1841 that Jacob Steiner gave the first proof
(which contain gaps) but later on completed by many
mathematicians. Steiner proved that if such a region exists in the
plane, it must be a circle.
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The Euclidean Isoperimetric Problem.

The idea of his proof can be outlined in the following three steps. Assume
therefore that there is a region G in the plane such that among all other
regions with the same perimeter of G , then G must be a disc.

Step I: The region G must
be convex. For if not, using
reflection, we can construct
another region with the
same perimeter but enclose
a larger area, this contradict
our assumption on G .

Figure: Steiner’s proof, step I.
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The Euclidean Isoperimetric Problem.

Step II: Any straight line
that divides the perimeter
of G in half must also divide
the area of G in half. Since
G is convex, each half of the
bounding curve lies entirely
on one side of the line
through A and B (see the
figures). Suppose the line
AB does not divide the area
of G in half, reflect the
larger area across AB to
obtain another region
having the same perimeter
of G but with a larger area.
Again, we obtain a
contradiction.

Figure: Steiner’s proof, step II.

Figure: The argument only works for a convex region.
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The Euclidean Isoperimetric Problem.

Step III: Now we concentrate on “half of

the figure”. Pick any point C on this half

curve and join it to A and B to obtain two

“lunes” AMC and BNC and a triangle

ACB. The angle at C can be either <π/2,

=π/2 or >π/2. Imagine that the lunes

are made of non-deformable material

and they are hinged at C. Now the area of

the region is the area of the two lunes

plus the area of the triangle. The area of

the triangle is computed by the base AC

and height BD. By adjusting the angle at

C by moving the lunes, we see that the

largest height is obtained when B = D,

that is the angle at C is π/2.

Hence, from elementary geometry, the angle ACB is a right angle if and only
if C lies on a semi-circle with diameter AB.
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The Euclidean Isoperimetric Problem.

Since Steiner’s proof there are many many proofs for the isoperimetric
inequality. We present a few for the R2 case.

Proof by complex function theory. Let z = x+ iy and
dA = dx∧dy = 1

2 idz∧dz. Using the fact that winding number of ∂Ω is
one, Green and Fubini’s theorem we find

4πA =
∫
Ω

2πi dz∧dz =
∫
Ω

∫
∂Ω

dξ

ξ−z
dz∧dz =

∫
∂Ω

∫
∂Ω

ξ−z

ξ−z
dz dξ≤ L2 .

The case of equality is easy to analyze in the above. The interplay
between geometric extremal problems (e.g. isoperimetric problem)
and sharp analytic inequalities is witnessed in the following analytic
proof of the planar isoperimetric inequality. First, let’s recall Wirtinger’s
inequality. If f is in the Sobolev space W 1,2([0,2π]) satisfying∫ 2π

0 f (t)dt = 0 then ∫ 2π

0
|f (t)|2dt ≤

∫ 2π

0
|f ′(t)|2dt , (2)

with equality holds only when f (t) = Acos(t)+Bsin(t). The proof of
Wirtinger’s inequality is an easy exercise in Fourier series.
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The Euclidean Isoperimetric Problem.

Let ds denote the element of arc length and assume that ∂Ω is a Lipschitz
curve which is the boundary of a domainΩ⊂R2. Denote by x = (x1,x2) the
position vector. By translating the regionΩwhich preserves area and
perimeter, we may assume that

∫
∂Ω xds = 0. The divergence theorem and

Wirtinger’s inequality applied to x1, x2 then gives

2A =
∫
Ω

div(x)dA =
∫
∂Ω

< x,~n > ds ≤
∫
∂Ω

|x|ds ≤
p

L

(∫
∂Ω

|x|2ds

) 1
2

≤
p

L

[(
L

2π

)2 ∫
∂Ω

∣∣∣∣dx

ds

∣∣∣∣2

ds

] 1
2

≤ L2

2π
.

Equality holds if and only ifΩ is a disc.
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The Euclidean Isoperimetric Problem.

The proof for higher dimension Euclidean spaces are more technical
and we will not recall them here. However a few remarks should be
made.
The case of R3 was proved by Schwarz in 1884. His argument can be
described in two steps:

A symmetrization process (known nowadays as Schwarz
symmetrization) that reduce the problem to finding the solution among
a class of rotationally symmetric objects.
A geometric construction to rule out rotationally symmetric candidates
different from the sphere.

The full generality of Theorem 1 was established by de Giorgi in 1958.

There are many proofs of the Euclidean isoperimetric problem. There
are also analogues of the same type of problem an in different settings,
i.e., Riemannian manifolds. Our goal is to investigate the
Sub-Riemannian counterpart of this problem and we start with the
Heisenberg group.
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The Heisenberg groupHn and relevant concept/quantities.

The Heisenberg groupHn is a Lie group on R2n+1 with the following
group law:

(x,y, t)◦ (x′,y′, t′) = (x+x′,y+y′, t + t′+ 1

2
(x′ ·y−y′ ·x)) .

where x = (x1, ...,xn),y = (y1, ...,yn), t ∈R and the dot product is the
standard dot product on Euclidean spaces.
Associated to this group law we work with the following standard
left-invariant vector fields: (i = 1..n)

Xi = ∂

∂xi
− yi

2

∂

∂t
, Yi = ∂

∂yi
+ xi

2

∂

∂t
, T = [Xi,Yi] = ∂

∂t
,

together with an inner product < , > with respect to which these 2n+1
vector fields form an orthonormal system. Hn equiped with < , > is then
a Riemannian manifold.

The Lebesgue measure on R2n+1 is both left and right translation
measure and therefore a Haar measure onHn. For sets E ⊂Hn, the
volume of E is the Lebesgue measure of E and will be denoted by |E|.
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The Heisenberg groupHn and relevant concept/quantities.

Given an oriented C2 embedded hypersurface S ⊂Hn (and after an
orientation is chosen) we let N be the Riemannian unit normal to S and
we write N =∑n

i=1(pi Xi +qi Yi)+ωT
The projection of N onto the horizontal plane span{Xi,Yi | i = 1, ..,n} at each
point g ∈S is called the horizontal normal and is denoted by
NH =∑n

i=1 pi Xi +qi Yi.

The set

ΣS
def= {g ∈S |NH (g) = 0}

is called the characteristic set (singular set by some authors) of the
hypersurface S . For our purpose, it suffices to know that for any C2

hypersurface S we have σ(ΣS ) = 0 where dσ is the Riemannian volume
on S .
For points g ∉ΣS we define the horizontal Gauss map (the horizontal unit
normal) by setting

νH (g) = NH (g)

|NH (g)| =
n∑

i=1
piXi +qiYi .

The vector field νH plays an important role in the analysis of hypersurfaces
in this setting.
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...relevant concept... Recall H-Gauss map νH =∑n
i=1 piXi +qiYi.

An important geometric quantity that sterms from νH is the so called
Horizontal mean curvature (H-mean curvature hereafter) H .

For go ∈S \ΣS define

H (g0) = divH (νH ) =
n∑

i=1
Xipi +Yiqi ,

and if go ∈ΣS H (go) = lim
g∈S \ΣS ,g→go

H (g)

provided the limit exists.

If E ⊂S is a smooth portion of S , the H-surface measure (or H-area)
of E is the quantity

σH (E) =
∫

E
|NH (g)|dσ(g) . recall dσ = Riemannian volume

However, the notion of H-surface measure can be extended to
non-smooth sets as follows.
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The Heisenberg groupHn and relevant concept/quantities.

For u ∈ L1
loc(Hn,dg) where dg is the Lebesgue measure onHn we define the

Horizontal variation of u by

VarH (u) = sup

{∫
Hn

u
n∑

i=1
Xiξi +Yiηi dg

∣∣∣ n∑
i=1

ξ2
i +η2

i ≤ 1 ,ξi,ηi ∈ C∞
o (Hn), i = 1..n

}

If u ∈ L1(Hn,dg) is such that VarH (u) <∞ we say that u is of bounded
H-variation. For any sets E ⊂Hn, we define the horizontal perimeter of E by

PH (E) = VarH (χE) where χE is the indicator function of E .

If PH (E) <∞ we say that E is of finite H-perimeter. We note here that if E is
smooth say (∂E is) C1, then PH (E) =σH (∂E).
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The Heisenberg groupHn and relevant concept/quantities.

Homogeneous structure onHn.

For λ 6= 0, define a family of dilations onHn to be a function
δλ :Hn →Hn given by δλ(x,y, t) = (λx,λy,λ2t). Here x,y ∈Rn, t ∈R.

For a fixed go ∈Hn, the left translation is the map τgo :Hn →Hn given by
τgo (g) = go ◦g where ◦ is the group law onHn.

We note here that both the Lebesgue measure and the H-perimeter
behave nicely with respect to left translation and dilation: For any
measurable set E ⊂Hn:

for any go ∈Hn , |τgo (E)| = |E| , PH (τgo (E)) = PH (E)

for any λ> 0 , |δλ(E)| =λQ|E| , PH (δλ(E)) =λQ−1PH (E) .

In the above, the number Q = 2n+2 is called the homogenous
dimension ofHn.
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The Heisenberg groupHn and relevant concept/quantities.

Homogenous norm and distances onHn

One can define a norm onHn as follow. For g = (x,y, t) ∈Hn,
x,y ∈Rn, t ∈ R and | · | denotes the standard Euclidean norm on Rn, we
let ||g||Hn = ((|x|2+|y|2)2+16t2)

1
4 . The fact that || · ||Hn is a norm is proved

by (1981). We also have ||δλ(g)||Hn = |λ|||g||Hn .
With this homogeneous norm we define a distance onHn as follows

dHn (g,g ′) = ||g−1◦g ′||Hn where g−1 = (−x,−y,−t) is the inverse of g with respect to ◦ .

There is however another distance from the Sub-Riemannian point of
view. For any piecewise C1 curve γ : [a,b] →Hn, we say that γ is a
horizontal curve if whenever γ′(s) is defined then at the point γ(s) ∈Hn

we have γ′(s) ∈ Span{X1, ...,Yn}.
For any horizontal curve, its horizontal length is then
lH (γ) = ∫ b

a < γ′(s),γ′(s) > 1
2 ds

For any g,g ′ ∈Hn we define the Carnot-Caratheodory distance between
g,g ′ as

dCC(g,g ′) = inf {lH (γ) |γ is an horizontal curve joining g and g ′.}

A theorem due to W.L. Chow in 1939 guarantee that any two points
g,g ′ ∈Hn can be connected by a horizontal curve (actually, inHn this
fact can be easily established alone) and hence dCC(g,g ′) is well defined.
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The Heisenberg groupHn and relevant concept/quantities.

If d denotes either dCC or dHn , then it is easy to verify that d is
translation invariant and homogeneous of degree one, i.e.

d(g ′′ ◦g,g ′′ ◦g ′) = d(g,g ′) and d(δλ(g),δλ(g ′)) = |λ|d(g,g ′) .

The two distances are comparable in the sense that there exist
constants c = c(Hn),C = C(Hn) such that for all g,g ′ ∈Hn we have
c dHn (g,g ′) ≤ dCC(g,g ′) ≤ CdHn (g,g ′). However, the shape of balls with
respect to these two distances are quite different as we will see.
Now we can consider the Isoperimetric problem in the Heisenberg
group.
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Pansu’s Isoperimetric inequality and conjecture.

The Isoperimetric problem began with Pansu’s work in 1982. Using an
idea of Croke, Pansu established the following Isoperimetric inequality
inH1: There exist a constant C > 0 so that |Ω| 3

4 ≤ CPH (Ω) for any
bounded open setΩ⊂H1 with C1 boundary. To state Pansu’s
conjecture, we introduce the following

Definition 2

The isoperimetric constant of the Heisenberg groupHn is the best constant for

which the isoperimetric inequality min{|Ω|
Q−1

Q , |H1 \Ω|
Q−1

Q } ≤ Ciso(Hn)PH (Ω),
that is

Ciso(Hn) = sup

min{|Ω|
Q−1

Q , |Hn \Ω|
Q−1

Q }

PH (Ω)

∣∣∣ 0 < PH (Ω) <∞
 ,

An isoperimetric profile of parameter V > 0 forHn consists of a family of

bounded sets BV with |BV | = V and |BV |
Q−1

Q = Ciso(Hn)PH (BV ). Since | · | and
PH (·) are invariant under left translation and scaling property hold for them,
the class of isoperimetric profile is preserved under left translation and group
dilation.

First Taiwan Geometry Symposium, NCTS South ()The Isoperimetric Problem in the Heisenberg groupHn November 20, 2010 22 / 44



Pansu’s Isoperimetric inequality and conjecture.

The Isoperimetric problem began with Pansu’s work in 1982. Using an
idea of Croke, Pansu established the following Isoperimetric inequality
inH1: There exist a constant C > 0 so that |Ω| 3

4 ≤ CPH (Ω) for any
bounded open setΩ⊂H1 with C1 boundary. To state Pansu’s
conjecture, we introduce the following

Definition 2

The isoperimetric constant of the Heisenberg groupHn is the best constant for

which the isoperimetric inequality min{|Ω|
Q−1

Q , |H1 \Ω|
Q−1

Q } ≤ Ciso(Hn)PH (Ω),
that is

Ciso(Hn) = sup

min{|Ω|
Q−1

Q , |Hn \Ω|
Q−1

Q }

PH (Ω)

∣∣∣ 0 < PH (Ω) <∞
 ,

An isoperimetric profile of parameter V > 0 forHn consists of a family of

bounded sets BV with |BV | = V and |BV |
Q−1

Q = Ciso(Hn)PH (BV ). Since | · | and
PH (·) are invariant under left translation and scaling property hold for them,
the class of isoperimetric profile is preserved under left translation and group
dilation.

First Taiwan Geometry Symposium, NCTS South ()The Isoperimetric Problem in the Heisenberg groupHn November 20, 2010 22 / 44



Pansu’s Isoperimetric inequality and conjecture.

Pansu conjectured in 1984 that the
isoperimetric profiles onH1 is obtained
by revolving around the t-axis the
geodesics (with respect to the
Carnot-Caratheodory metric) joining
the points (0,0,πR2/8) and
(0,0,−πR2/8). For the moment, R > 0 is
just a parameter. These geodesic can be
easily obtained as: γ : [−π,π] →H1

γ(s) =
(

R

2
(cos(s)+1),

R

2
sin(s),

R2

8
(sin(s)+ s)

)
With the explicit form of the geodesics, it
is an easy excercise to compute and to

obtain Ciso(H1) = 3
3
4

4
p
π

Figure: An illustration of
Pansu’s conjecture with R = 4
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Pansu’s Isoperimetric inequality and conjecture.

We have to stress that until today, Pansu’s conjecture has not completely
been solved in the greatest generality, that is, if we consider the largest
admissible sets: Ω⊂Hn for which PH (Ω) <∞ without any regularity
assumption on ∂Ω. In the remaining time, we survey results and some
ideas used in the pursue of Pansu’s conjecture. The first question that one
may have is why the gauge balls or the CC-metric balls are not solution to
the isoperimetric problem (i.e., not the isoperimetric profiles).

The gauge balls are smooth and one can compute its H-mean
curvature and it is not constant. Later on, we see that a necessary
condition for a smooth set to be a solution to the isoperimetric
problem, its H-mean curvature must be constant.

Monti in 2001 showed that Given a CC-ball B one can slightly modify it
slightly to obtain a set D with |B| = |D| but PH (D) < PH (B). This rules
out the CC-balls as solution as well.
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Balls are not solution to the isoperimetric problem.

The isoperimetric profile from Pansu’s conjecture can be described more
explicitly as follows.

∂BR(0) = {(x,y, t) ∈R2n+1 | t =±u(x,y) = u(|z|)}

where

u(x,y) = u(|z|) = |z|
√

R2 −|z|2
4

− R2

4
arcsin

( |z|
R

)
+ πR2

8
. (3)

In the above |z|2 = |x|2 +|y|2.
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Balls are not solution to the isoperimetric problem.

The gauge balls, CC-balls and the isoperimetric profile from Pansu’s
conjecture and is called now a days the Heisenberg bubbles. Note that
CC-balls are not smooth.

Figure: The Gauge ball with R = 4.

Figure: A quarter of the CC-ball with
R = 4

Figure: The isoperimetric bubble, R = 4
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Existence of the Isoperimetric Profile in Carnot-Groups: Leonardi-Rigot.

We turn to the first positive result in this direction: The existence result.

Theorem 3 (Leonardi-Rigot, 2003)

For any V > 0, there exists a bounded setΩ⊂Hn with PH (Ω) <∞, |Ω| = V

and |Ω|
Q−1

Q = Ciso(Hn)PH (Ω).

Remark 4

Leonardi and Rigot’s result continue to hold in all Carnot-groups where the
Heisenberg groupsHn, n ≥ 1 are the simplest such examples of step 2.
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Existence of the Isoperimetric Profile in Carnot-Groups: Leonardi-Rigot.

The proof of Theorem 3 consists of the following ideas.

An important ingredient due to Garofalo-Nhieu (1996) states that if
{Ωn} is a sequence of measurable sets inHn (in fact, in more greater
generality) with sup{PH (Ωn)} <∞ then there is a subsequence still
denoted by {Ωn} and a measurable setΩwith PH (Ω) <∞ and χΩn →χΩ
in L1

loc(Hn).
They considered a sequence {Ωn} such that |Ωn| = 1 and that

|Ωn|
Q−1

Q

PH (Ωn)
= 1

PH (Ωn)
→ Ciso(Hn)

with PH (Ωn) ≤ Ciso(Hn)−1(1+1/n). Using the above theorem, they
obtain a subsequence {Ωn} converging in L1

loc(Hn) toΩwith |Ω| = 1.
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Existence of the Isoperimetric Profile in Carnot-Groups: Leonardi-Rigot.

To show that thatΩ is bounded, they established the following lemma
that prevents the possibility that the setsΩn become very thin, spread
out and in the limit lose volume at infinity. That is, for eachΩn, a fixed
amount of volume must lie within a ball of radius one.

Lemma 1 (“Concentration-Compactness”)

Let A be a set with 0 < |A|,PH (A) <∞. If m ∈ (0, |B(0,1)|/2) is such that
|A∩B(g,1)| < m for all g ∈Hn then there is a constant c > 0 so that

c

( |A|
PH (A)

)Q

≤ m .

The lemma plus a bit of work show that the limiting setΩ is essentially
bounded. Finally, They established that ∂Ω satisfies (1) Ahlfors
regularity condition and (2) interior and exterior corkscrew condition.
Essential boundedness together with (1) and (2) imply thatΩ is
bounded.
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Smooth Cylindrical Case and some properties of the Isoperimetric profile:
Leonardi-Masnou, Ritoré-Rosales.

The next line of investigation proceeds to demonstrate that Pansu’s
conjecture holds for restricted family of sets inHn: rotationally invariant
around the t-axis (i.e. cylindrically symmetric) and smooth i.e. sets whose
boundary is C2. Leonardi and Masnou considered the following restricted
class F where F ∈F satisfies the following conditions: Up to left
translations ∂F = ∂+F ∪∂−F where ∂+F and ∂−F are the graphs of smooth
functions f (|z|) and −f (|z|) respectively defined on some Euclidean balls
B ⊂R2n with f = 0 on ∂B. By considering the isoperimetric problem in
variational form, they solve the Euler-Lagrange equation which takes the
form (due to the cylindrical symmetry assumption)

d

dρ

(
ρ2n−1f ′(ρ)√
4ρ2 + f ′(ρ)2

)
=λnρ

2n−1 , f ′(0) = 0 .
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Smooth Cylindrical case, properties ...

u(x,y) = u(|z|) = |z|
p

R2−|z|2
4 − R2

4 arcsin
( |z|

R

)
+ πR2

8 .

By solving the above equation, they obtain the formula (3) i.e., the
Heisenberg bubbles. They also establish some properties of such sets
which can be summarized as follows

Theorem 5 (Leonardi-Masnou, 2005)

There exists, up to dilations and left translations, setsΩ given by (3) are
critical points of the isoperimetric problem inHn. Furthermore, the H-mean
curvature of ∂Ω is constant and ∂Ω are foliated by the geodesics joining the
North and South poles ofΩ in Pansu’s conjecture.

In 2006, Ritoré and Rosales derived the first variation formula for variations
with a volume constraint. As a consequence, critical points of the
isoperimetric problem (from the point of view of a variational problem)
must have constant H-mean curvature. We make precise this notion.
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curvature of ∂Ω is constant and ∂Ω are foliated by the geodesics joining the
North and South poles ofΩ in Pansu’s conjecture.

In 2006, Ritoré and Rosales derived the first variation formula for variations
with a volume constraint. As a consequence, critical points of the
isoperimetric problem (from the point of view of a variational problem)
must have constant H-mean curvature. We make precise this notion.
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Some properties of the isoperimetric profile.

Definition 6

LetΩ⊂Hn be a C2 bounded set such that ∂Ω is an embedded surface with
PH (Ω) =σH (∂Ω) <∞ and U a C1 vector field with compact support onHn.
For small ε denote by Sε = {exp(εUp) |p ∈ ∂Ω} the variation of ∂Ω induced by
U. We letΩε the region enclosed by Sε and define P(ε) =σH (Sε), V (ε) = |Ωε|.

It is well known that

V ′(0) =
∫
Ω

div(U)dg =−
∫
∂Ω

< U ,N > dσ (4)

where N is the Riemannian unit normal pointing intoΩ, dσ is the
Riemannian volume on ∂Ω.
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Some properties of the isoperimetric profile.

Theorem 7 (Ritoré-Rosales, 2006 “First variation formula”)

IfΩ is such that V ′(0) = 0 and the H-mean curvature H of ∂Ω is in
L1

loc(∂Ω,dσ) then

P′(0) =
∫
∂Ω

< U ,N > H dσ .

Since a C2 solutionΩ to the isoperimetric problem must be a critical point
of the H-perimeter functional (i.e. P′(0) = 0) that preserves volume (i.e.
V ′(0) = 0 for all C1 vector fields U with compact support inHn) we have (in
view of Theorem 11 and (4)

Corollary 8 (Ritoré-Rosales, 2006)

IfΩ is a C2 solution to the isoperimetric problem, then the H-mean
curvature H is constant outside the singular set Σ∂Ω of ∂Ω.
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Partial Symmetry Case: Danielli-Garofalo-Nhieu.

In 2008, Danielli-Garofalo-Nhieu improved Leonardi-Masnou’s result by relaxing

some symmetry conditions. We also show that Pansu’s conjecture is not only a

critical point but indeed a minimizer of the H-perimeter functional, a fact not

established by Leonardi-Masnou. We begin by describing these geometric

conditions. We letHn+ = {(z, t) ∈Hn | t > 0},Hn− = {(z, t) ∈Hn | t < 0}, and consider the

collection E = {E ⊂Hn |E satisfies (i)− (iii)}, where

(i) |E ∩Hn+| = |E ∩Hn−| ;

(ii) there exist R > 0, and functions u,v : B(0,R) → [0,∞), with
u,v ∈ C2(B(0,R))∩C(B(0,R)), u = v = 0 on ∂B(0,R), and such that

∂E ∩Hn
+ = {(z, t) ∈Hn

+ | |z| < R , t = u(z)} ,

∂E ∩Hn
− = {(z, t) ∈Hn

− | |z| < R , t = − v(z)} .

(iii) {z ∈ B(0,R) | u(z) = 0} ∩ {z ∈ B(0,R) | v(z) = 0} = ∅ .

Figure: E ∈ E
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Partial Symmetry case: Danielli-Garofalo-Nhieu.

Remark 9

We note explicitly that condition

(iii) {z ∈ B(0,R) | u(z) = 0} ∩ {z ∈ B(0,R) | v(z) = 0} = ∅

serves to guarantee that every E ∈ E is a piecewise C2 domain inHn (with
possible discontinuities in the derivatives only on that part of E which
intersects the hyperplane t = 0). We also stress that the upper and lower
portions of a set E ∈ E can be described by possibly different C2 graphs, and
that, besides C2 smoothness, and the fact that their common domain is a
ball, no additional assumption is made on the functions u and v. For
instance, we do not require a priori that u and/or v are spherically
symmetric. Here is our main result.
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Partial Symmetry: (3) u(x,y) = u(|z|) = |z|
p

R2−|z|2
4 − R2

4 arcsin
( |z|

R

)
+ πR2

8 .

Theorem 10 (Danielli-Garofalo-Nhieu, 2008)

Let V > 0, and define the number R > 0 by

R =
 (Q−2)Γ

(
Q+2

2

)
Γ

(
Q−2

2

)
π

Q−1
2 Γ

(
Q+1

2

)
1/Q

V 1/Q .

Given such R, then the variational problem min
E∈E ,|E|=V

PH (E;Hn) has a unique

solution ER ∈ E , where ∂ER is described by the graph t =±u(x,y) i.e. (3) The
boundary of ER is only of class C2, but not of class C3, near its two singular points(
0,±πR2

8

)
, it is C∞ away from them, and ∂ER has positive constant H-mean

curvature and isoperimetric constant given respectively by

H = Q−2

R
, C(Hn) =

(Q−1)Γ
(

Q
2

) 2
Q

Q
Q−1

Q (Q−2)Γ
(

Q+1
2

) 1
Q
π

Q−1
2Q

.
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Partial Symmetry: (3) u(x,y) = u(|z|) = |z|
√

R2−|z|2
4 − R2

4 arcsin
( |z|

R

)
+ πR2

8 .

Our proof is based on the following ideas.

Under the assumption of sets E ∈ E , the variational problem
min

E∈E ,|E|=V
PH (E;Hn) is equivalent to minimizing the unconstrained

functional with a Lagrange multiplier λ to be properly chosen:

F [u] =
∫

supp(u)

{∣∣∣∣∇zu(z)+ z⊥

2

∣∣∣∣ + λu(z)

}
dz z = (x,y) ∈R2n (5)

We easily recognize that the Euler-Lagrange equation of (5) is

divz

 ∇zu+ z⊥
2√

|∇zu|2 + |z|2
4 +<∇zu,z⊥ >

 = λ z⊥ = (−y,x) ∈R2n . (6)

We do not solve (6) but rather verify that the candidate given by the
formula (3) that has cylindrical symmetric is a solution.
Finally, we show that the functional (5) is a convex functional and
therefore, the critical point is the unique minimizer.
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The C2 solution to the Isoperimetric problem inH1: Ritore-Rosales.

The best smooth C2 result in the first Heisenberg groupH1 is obtained by
Ritoré and Rosales in 2008. They proved the remarkable theorem without
any symmetry assumption.

Theorem 11 (Ritoré-Rosales, 2008)

IfΩ is an isoperimetric region inH1 which is bounded by a C2 surface S , then
S is congruent (i.e. up to left translation and dilations onH1

To briefly sketch the proof we recall a few concepts and facts introduced
earlier

The singular set of a C2 smooth surface S ⊂Hn is
ΣS = {g ∈S | |NH | = 0}, or equivalently it is where the tangent plane
coincide with the horizontal plane spaned by the 2n vector fields
X1, ...,Yn.
σ(ΣS ) =σH (ΣS ).
At points p ∈S \ΣS , S ⊂H1, the horizontal tangential vector is the
unit vector that lies in the intersection of the tangent plane with the
horizontal plane, we call this unit vector say J(νH ) (since it is also
orthogonal to the horizontal unit normal νH .
On an orientable surface S and when an orientation is chosen, the
flows (integral curves) of the vector field J(νH ) foliate S . We call these
Legendrian curves or Legendrian foliation of S .
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X1, ...,Yn.
σ(ΣS ) =σH (ΣS ).
At points p ∈S \ΣS , S ⊂H1, the horizontal tangential vector is the
unit vector that lies in the intersection of the tangent plane with the
horizontal plane, we call this unit vector say J(νH ) (since it is also
orthogonal to the horizontal unit normal νH .
On an orientable surface S and when an orientation is chosen, the
flows (integral curves) of the vector field J(νH ) foliate S . We call these
Legendrian curves or Legendrian foliation of S .
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The C2 solution to the Isoperimetric problem inH1: Ritore-Rosales.

A fundamental ingredient in the proof of Theorem 11 is the important
contribution by Cheng-Hwang-Malchiodi-Yang (2005) in the analysis of C2

surface in the Heisenberg groupH1 concerning the structure of
characteristic/singular set ΣS . We summarize and collect these results
below, specializing to the case where the surface has constant H-mean
curvature.

Theorem 12 (Cheng-Hwang-Malchiodi-Yang, 2005)

Let S ⊂H1 be a C2 oriented immersed surface with constant H-mean
curvature H . Then the singular set ΣS consists of isolated points and C1

curves with non-vanishing tangent vector. Furthermore

If p ∈ΣS is isolated then there exists r > 0, λ ∈Rwith |λ| = |H | such that
Dr(p) = {γλp,v(s) |v ∈ TpS , |v| = 1,s ∈ [0,r)} (where γ_p,vλ is the geodesic
whose curvature is λ originated from p with v the tangent vector at p) is
an open neighborhood of p in S .
If p is contained in a C1 singular curve Γ⊂ΣS then there is a
neighborhood B of p in S such that B \Γ is the union of two disjoint
connected open sets B+, B− contained in S \ΣS and νH extends
continuously to Γ from both sides of B \Γ, that is the limits

ν+H (p) = lim
q→p,q∈B+νH (q) , ν−H (p) = lim

q→p,q∈B−νH (q),

exits for any p ∈ B∩Γ. These extensions satisfy ν+H (p) =−ν−H (p). Moreover,
there are exactly two geodesics γλ1 ⊂ B+ and γγ2 ⊂ B− starting from p and
meeting transversly Γ at p with (γλ1 )′(0) =−(γλ2 )′(0). The curvature λ does
not depends on p and satisfies |λ| = |H |.
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The C2 solution to the Isoperimetric problem inH1: Ritore-Rosales.

We now describe the proof of Ritoré-Rosales’ theorem. In what follows, we
letΩ to be a critical point of the isoperimetric problem inH1 such that ∂Ω is
C2, compact, orientable.

I The interaction between Legendrian foliation and singular curves: If
Σ∂Ω contains a C1 curve C, then the rules of Legendrian foliation of ∂Ω
meet C orthogonally.

II Improved regularity of singular curves: If Σ∂Ω contains a C1 curve C,
then infact C is C2. This result leads to a crucial property of the singular
curves.

III If ∂Ω is complete surface with non-vanishing H-mean curvature, then
any connected curve in ΣS is a geodesic.

IV By step III, any compact C2 solution to the isoperimetric problem
cannot have a nontrival curve in its singular set since such curve would
be a geodesic which will leave any bounded domain in a finite time.
Thus ΣS consists of isolated points.

V If S is any C2, connected, complete oriented and immerse surface in
H1 with constant H-mean curvature and if ΣS contains an isolated
point, then S is congruent to the boundary of a bubble set.
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The non-smooth cases: Monti.

We now describe two results in the directions of finding the isoperimetric
profile among non-smooth sets.

Definition 13

A set E ⊂Hn is axially symmetric if (z, t) ∈ E implies (ξ, t) ∈ E for all ξ ∈R2n

such that |ξ| = |z|. Let A denote the collections of axially symmetric sets in
Hn.

Remark 14

We point out that here, the sets E ∈A are not necessary smooth nor necessary
the graph of a function.
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The non-smooth cases: Monti, Monti-Rickly.

Theorem 15 (Monti, 2008)

The isoperimetric profiles inHn up to a vertical translation, a dilation and a
2n+1-Lebesgue measure negligible set, are still given by the bubble set
described by (3) if restricted to the class A

The ideas in the proof consist of using several rearrangements to reduce the
Theorem 15 to a one dimensional problem which can be solved by
elementary methods.

Theorem 16 (Monti-Rickly, 2009)

The isoperimetric profile given by (3) is the unique solution to the
isoperimetric problem when restricted to Euclidean convex sets inH1.

Note that convex sets are not necessarity smooth. The aim is to show that
patches of ∂Ω can be parameterized by lefts of circles. The convexity
hypothesis is then used to conclude the argument.
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An extension of Danielli-Garofalo-Nhieu’s result: Ritoré’s calibration argument.

The most recent result up to now for the isoperimetric problem inHn is
again due to Ritoré. He generalized the results of Danielli-Garofalo-Nhieu
by removing that the upper and lower part of ∂Ω to be graphs. To be
precise, he proved the following theorem. Let Dr = {(z,0) | |z| < r} ⊂R2n be
the Euclidean ball centered at 0 with radius r. Cr = {(z, t) |z ∈ Dr , t ∈R}. We
also denote the region enclosed by the Heisenberg bubbles inHn by Br .

Theorem 17

Let Σ⊂Hn be such that PH (Σ) <∞ and Dr ⊂Σ⊂ Cr for some
r > 0. Then PH (Σ) ≥ PH (BR). Equality holds if and only if
Σ=BR.

Figure: Conditions for
the sets Σ.
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An extension of Danielli-Garofalo-Nhieu’s result: Ritoré’s calibration argument.

A rough sketch of the proof is the following. On the cylinder Cr , two
foliations by vertically translating the upper and lower boundary of Br are
constructed. Using these foliations, he proved that the bubble sets ∂Bλ

minimize the functional “H-perimeter - nλ volume” in the class of sets E
mentioned above. Then minimize over all bubble sets Bµ the functional
“H-perimeter - nµ(volume - |Σ|) to obtained the desired result. Another
important result due to Monti-Vittone is used to deal with the issue of
regularity: a set inHn with locally finite H-perimeter with continuous
horizontal unit normal has H-regular boundary.
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Thank you for your attention!
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