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6.3 Absolute convergence

Definition

Let S =
∞∑

k=1
ak be an infinite series.

(i)S is said to converge absolutely if and only if
∞∑

k=1
|ak | <∞.

(ii)S is said to converge conditionally if and only if S
converges but not absolutely.
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Remark:

If
∞∑

k=1
ak converges absolutely, then

∞∑
k=1

ak converges, but

not conversely. In particular, there exist conditionally
convergent series.
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Proof:

Suppose that
∞∑

k=1
ak converges absolutely. Given ε > 0,

choose N ∈ N so that (6) holds. Then∣∣∣∣∣
m∑

k=n

ak

∣∣∣∣∣ ≤
m∑

k=n

|ak | < ε

for M > n ≥ N. Hence, by the Cauchy Criterion,
∞∑

k=1
ak

converges.
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We shall finish the proof by showing that S :=
∞∑

k=1
(−1)k/k

converges conditionally. Since the harmonic series
diverges, S does not converge absolutely. On the other
hand, the tails of S look like

∞∑
j=k

(−1)j

j
= (−1)k

(
1
k
− 1

k + 1
+

1
k + 2

− 1
k + 3

+ · · ·
)
.
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By grouping pairs of terms together,
it is easy to see that the sum inside the parentheses is
greater than 0 but less than 1/k ,
i.e., ∣∣∣∣∣∣

∞∑
j=k

(−1)j

j

∣∣∣∣∣∣ < 1
k
.

Hence
∞∑

k=1

(−1)k

k
converges by Corlllary 6.9. 2
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Definition
The supremum s of the set of adherent points of a
sequence {xk} is called the limit supremum of {xk}.
(Notation: s := lim sup

k→∞
xk .)

WEN-CHING LIEN Advanced Calculus (I)



Definition
The supremum s of the set of adherent points of a
sequence {xk} is called the limit supremum of {xk}.
(Notation: s := lim sup

k→∞
xk .)

WEN-CHING LIEN Advanced Calculus (I)



Remark:

Let x ∈ R and {xk} be a real sequence.

(i)If lim sup
k→∞

xk < x , then xk < x for large k.

(ii)If lim sup
k→∞

xk > x , then xk > x for infinitely many k.

(iii)If xk → x as k →∞, then lim sup
k→∞

xk = x .
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Proof:

(i)

Let s := lim sup
k→∞

xk < x but suppose to the contrary that

there exist natural numbers k1 < k2 < · · · such that
xkj ≥ x for j ∈ N. If {xk} is unbounded above, then∞ is
an adherent point of {xk} so s =∞, a contradiction.

If {xkj} is bounded above by (by C), then it is bounded
(since x ≤ xk ≤ C for all j ∈ N). Hence, by the
Bolzano-Weierstrass Theorem and the fact that xkj ≥ x ,
{xk} has an adherent point ≥ x , i.e., s ≥ x , another
contradiction.
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(ii)

If s > x , then choose an adherent point a ∈ (x , s). By the
Approximation Propert there is a subsequence {xkj}
which converges to a, i.e., xkj > x for large j.
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(iii)

If xk converges to x, then any subsequence xkj also
converges to x (see Theorem 2.6). 2
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Theorem (Root Test)

Let ak ∈ R and r := lim sup
k→∞

|ak |1/k .

(i) If r < 1, then
∞∑

k=1
ak converges absolutely.

(ii) If r > 1, then
∞∑

k=1
ak diverges.
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Definition

A series
∞∑

j=1
bj is called a rearrangment of a series

∞∑
k=1

ak if

and only if there is a 1-1 function f from N onto N such that

bf (k) = ak , k ∈ N
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Theorem

If
∞∑

k=1
ak converges absolutely and

∞∑
j=1

bj is any

rearrangment of
∞∑

k=1
ak , then

∞∑
j=1

bj converges and

∞∑
k=1

ak =
∞∑

j=1

bj .

WEN-CHING LIEN Advanced Calculus (I)



Theorem

If
∞∑

k=1
ak converges absolutely and

∞∑
j=1

bj is any

rearrangment of
∞∑

k=1
ak , then

∞∑
j=1

bj converges and

∞∑
k=1

ak =
∞∑

j=1

bj .

WEN-CHING LIEN Advanced Calculus (I)



Proof:

Let ε > 0. Set Sn =
n∑

k=1
ak , s =

∞∑
k=1

ak , and tm =
m∑

j=1
bj ,

n,m ∈ N. Since
∞∑

k=1
ak converges absolutely, we can

choose N ∈ N (see Corollary 6.9) such that

(7)
∞∑

k=N+1

|ak | ≤
ε

2
.

Thus

(8) |sN − s| =

∣∣∣∣∣
∞∑

k=N+1

ak

∣∣∣∣∣ ≤
∞∑

k=N+1

|ak | <
ε

2
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Let f be a 1-1 function from N onto N that satisfies

bf (k) = ak , k ∈ N

and set M = max{f (1), · · · , f (N)}. Notice that

{a1, · · · ,aN} ⊆ {b1, · · · ,bM}.
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Let m ≥ M. Then tm − sN contains only ak
′s whose

indices satisfy k > N. Thus, it follows from (7) that

|tm − sN | ≤
∞∑

k=N+1

|ak | <
ε

2
.

Hence by (8),

|tm − s| ≤ |tm − sN |+ |sN − s| < ε

2
+
ε

2
= ε

for m ≥ M. Therefore,

s =
∞∑

j=1

bj . 2
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Theorem
Suppose that ak ∈ R for k ∈ N.

(i) If
∞∑

k=1
ak converges absolutely, then so do

∞∑
k=1

ak
+ and

∞∑
k=1

ak
−. In fact,

∞∑
k=1

|ak | =
∞∑

k=1

ak
++

∞∑
k=1

ak
− and

∞∑
k=1

ak =
∞∑

k=1

ak
+−

∞∑
k=1

ak
−

(ii)If
∞∑

k=1
ak converges conditionally, then

∞∑
k=1

ak
+ =

∞∑
k=1

ak
− =∞.
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Proof:

By definition,
ak

+ = (|ak |+ ak)

2
. Since both

∞∑
k=1
|ak | and

∞∑
k=1

ak converge, it follows from Theorem 6.10 that

∞∑
k=1

ak
+ =

1
2

∞∑
k=1

|ak |+
1
2

∞∑
k=1

ak

converges. Similarly,

∞∑
k=1

ak
− =

1
2

∞∑
k=1

|ak | −
1
2

∞∑
k=1

ak

converges. This proves part (i).
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Suppose that part (ii) is false. By symmetry we may

suppose that
∞∑

k=1
ak

+ converges. Since
∞∑

k=1
ak converges,

it follows from (10) that

∞∑
k=1

ak
− =

∞∑
k=1

ak
+ −

∞∑
k=1

ak

converges. Thus,

∞∑
k=1

|ak | =
∞∑

k=1

ak
+ +

∞∑
k=1

ak
−

converges, a contradiction. 2
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Theorem (Riemann)

Let x ∈ R. If
∞∑

k=1
ak is conditionally convergent, then there

is a rearrangement of
∞∑

k=1
ak that converges to x.
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Thank you.
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