Advanced Calculus (I)

WEN-CHING LIEN

Department of Mathematics National Cheng Kung University

Definition

Let $S = \sum_{k=1}^{\infty} a_k$ be an infinite series.

(i)S is said to converge absolutely if and only if

$$\sum_{k=1}^{\infty} |a_k| < \infty.$$

Definition

Let $S = \sum_{k=1}^{\infty} a_k$ be an infinite series.

(i)S is said to *converge absolutely* if and only if

$$\sum_{k=1}^{\infty} |a_k| < \infty.$$

Definition

Let $S = \sum_{k=1}^{\infty} a_k$ be an infinite series.

(i) S is said to converge absolutely if and only if

$$\sum_{k=1}^{\infty} |a_k| < \infty$$

Definition

Let $S = \sum_{k=1}^{\infty} a_k$ be an infinite series.

(i)S is said to converge absolutely if and only if

$$\sum_{k=1}^{\infty} |a_k| < \infty.$$

Definition

Let $S = \sum_{k=1}^{\infty} a_k$ be an infinite series.

(i)S is said to converge absolutely if and only if

$$\sum_{k=1}^{\infty} |a_k| < \infty.$$

Definition

Let $S = \sum_{k=1}^{\infty} a_k$ be an infinite series.

(i)S is said to converge absolutely if and only if

$$\sum_{k=1}^{\infty} |a_k| < \infty.$$

If $\sum_{k=1}^{\infty} a_k$ converges absolutely, then $\sum_{k=1}^{\infty} a_k$ converges, but not conversely. In particular, there exist conditionally convergent series.

If $\sum_{k=1}^{\infty} a_k$ converges absolutely, then $\sum_{k=1}^{\infty} a_k$ converges, but not conversely. In particular, there exist conditionally convergent series.

Suppose that $\sum_{k=1}^{\infty} a_k$ converges absolutely. Given $\epsilon > 0$, choose $N \in \mathbb{N}$ so that (6) holds. Then

$$\left|\sum_{k=n}^m a_k\right| \le \sum_{k=n}^m |a_k| < \epsilon$$

Suppose that $\sum_{k=1}^{\infty} a_k$ converges absolutely. Given $\epsilon > 0$, choose $N \in \mathbb{N}$ so that (6) holds. Then

$$\left|\sum_{k=n}^m a_k\right| \le \sum_{k=n}^m |a_k| < \epsilon$$

Suppose that $\sum_{k=1}^{\infty} a_k$ converges absolutely. Given $\epsilon > 0$,

choose $N \in \mathbb{N}$ so that (6) holds. Then

$$\left|\sum_{k=n}^m a_k\right| \le \sum_{k=n}^m |a_k| < \epsilon$$

Suppose that $\sum_{k=1}^{\infty} a_k$ converges absolutely. Given $\epsilon > 0$, choose $N \in \mathbf{N}$ so that (6) holds. Then

$$\left|\sum_{k=n}^m a_k\right| \le \sum_{k=n}^m |a_k| < \epsilon$$

Suppose that $\sum_{k=1}^{\infty} a_k$ converges absolutely. Given $\epsilon > 0$, choose $N \in \mathbf{N}$ so that (6) holds. Then

$$\left|\sum_{k=n}^m a_k\right| \leq \sum_{k=n}^m |a_k| < \epsilon$$

Suppose that $\sum_{k=1}^{\infty} a_k$ converges absolutely. Given $\epsilon > 0$, choose $N \in \mathbf{N}$ so that (6) holds. Then

$$\left|\sum_{k=n}^m a_k\right| \leq \sum_{k=n}^m |a_k| < \epsilon$$

Suppose that $\sum_{k=1}^{\infty} a_k$ converges absolutely. Given $\epsilon > 0$, choose $N \in \mathbf{N}$ so that (6) holds. Then

$$\left|\sum_{k=n}^m a_k\right| \leq \sum_{k=n}^m |a_k| < \epsilon$$

Suppose that $\sum_{k=1}^{\infty} a_k$ converges absolutely. Given $\epsilon > 0$, choose $N \in \mathbf{N}$ so that (6) holds. Then

$$\left|\sum_{k=n}^m a_k\right| \leq \sum_{k=n}^m |a_k| < \epsilon$$

$$\sum_{j=k}^{\infty} \frac{(-1)^j}{j} = (-1)^k \left(\frac{1}{k} - \frac{1}{k+1} + \frac{1}{k+2} - \frac{1}{k+3} + \cdots \right).$$

$$\sum_{j=k}^{\infty} \frac{(-1)^j}{j} = (-1)^k \left(\frac{1}{k} - \frac{1}{k+1} + \frac{1}{k+2} - \frac{1}{k+3} + \cdots \right).$$

$$\sum_{j=k}^{\infty} \frac{(-1)^j}{j} = (-1)^k \left(\frac{1}{k} - \frac{1}{k+1} + \frac{1}{k+2} - \frac{1}{k+3} + \cdots \right)$$

$$\sum_{j=k}^{\infty} \frac{(-1)^j}{j} = (-1)^k \left(\frac{1}{k} - \frac{1}{k+1} + \frac{1}{k+2} - \frac{1}{k+3} + \cdots \right)$$

$$\sum_{j=k}^{\infty} \frac{(-1)^{j}}{j} = (-1)^{k} \left(\frac{1}{k} - \frac{1}{k+1} + \frac{1}{k+2} - \frac{1}{k+3} + \cdots \right)$$

$$\sum_{j=k}^{\infty} \frac{(-1)^j}{j} = (-1)^k \left(\frac{1}{k} - \frac{1}{k+1} + \frac{1}{k+2} - \frac{1}{k+3} + \cdots \right).$$

By grouping pairs of terms together, it is easy to see that the sum inside the parentheses is greater than 0 but less than 1/k, i.e.,

$$\left|\sum_{j=k}^{\infty} \frac{(-1)^j}{j}\right| < \frac{1}{k}.$$

Hence $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$ converges by Corlliary 6.9.

By grouping pairs of terms together,

it is easy to see that the sum inside the parentheses is greater than 0 but less than 1/k, i.e.,

$$\left|\sum_{j=k}^{\infty} \frac{(-1)^j}{j}\right| < \frac{1}{k}.$$

Hence
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$$
 converges by Corlllary 6.9. \square

By grouping pairs of terms together, it is easy to see that the sum inside the parentheses is greater than 0 but less than 1/k,

ı.e.,

$$\left|\sum_{j=k}^{\infty} \frac{(-1)^j}{j}\right| < \frac{1}{k}.$$

Hence
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$$
 converges by Corllary 6.9. \square

By grouping pairs of terms together, it is easy to see that the sum inside the parentheses is greater than 0 but less than 1/k, i.e.,

$$\left|\sum_{j=k}^{\infty}\frac{(-1)^j}{j}\right|<\frac{1}{k}.$$

Hence
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$$
 converges by Corllary 6.9. \square

By grouping pairs of terms together, it is easy to see that the sum inside the parentheses is greater than 0 but less than 1/k, i.e.,

$$\left|\sum_{j=k}^{\infty} \frac{(-1)^j}{j}\right| < \frac{1}{k}.$$

Hence $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$ converges by Corlllary 6.9. \Box

Definition

The supremum s of the set of adherent points of a sequence $\{x_k\}$ is called the *limit supremum* of $\{x_k\}$. (Notation: $s := \limsup_{k \to \infty} x_k$.)

Definition

The supremum s of the set of adherent points of a sequence $\{x_k\}$ is called the *limit supremum* of $\{x_k\}$. (Notation: $s := \limsup_{k \to \infty} x_k$.)

- (i)If $\limsup_{k \to \infty} x_k < x$, then $x_k < x$ for large k.
- (ii)If $\limsup_{k\to\infty} x_k>x$, then $x_k>x$ for infinitely many k.
- (iii) If $x_k \to x$ as $k \to \infty$, then $\limsup_{k \to \infty} x_k = x$.

- (i) If $\limsup_{k \to \infty} x_k < x$, then $x_k < x$ for large k.
- (ii) If $\limsup_{k\to\infty} x_k > x$, then $x_k > x$ for infinitely many k.
- (iii) If $x_k \to x$ as $k \to \infty$, then $\limsup_{k \to \infty} x_k = x$.

- (i) If $\limsup_{k \to \infty} x_k < x$, then $x_k < x$ for large k.
- (ii)If $\limsup_{k \to \infty} x_k > x$, then $x_k > x$ for infinitely many k.
- (iii) If $x_k \to x$ as $k \to \infty$, then $\limsup_{k \to \infty} x_k = x$.

- (i)If $\limsup_{k \to \infty} x_k < x$, then $x_k < x$ for large k.
- (ii)If $\limsup_{k\to\infty} x_k > x$, then $x_k > x$ for infinitely many k.
- (iii)If $x_k o x$ as $k o \infty$, then $\limsup_{k o \infty} x_k = x$.

- (i) If $\limsup_{k \to \infty} x_k < x$, then $x_k < x$ for large k.
- (ii) If $\limsup_{k\to\infty} x_k > x$, then $x_k > x$ for infinitely many k.
- (iii) If $x_k \to x$ as $k \to \infty$, then $\limsup_{k \to \infty} x_k = x$.

- (i)If $\limsup_{k \to \infty} x_k < x$, then $x_k < x$ for large k.
- (ii)If $\limsup_{k\to\infty} x_k > x$, then $x_k > x$ for infinitely many k.
- (iii) If $x_k \to x$ as $k \to \infty$, then $\limsup_{k \to \infty} x_k = x$.

Remark:

Let $x \in \mathbf{R}$ and $\{x_k\}$ be a real sequence.

- (i)If $\limsup_{k \to \infty} x_k < x$, then $x_k < x$ for large k.
- (ii)If $\limsup_{k\to\infty} x_k > x$, then $x_k > x$ for infinitely many k.
- (iii) If $x_k \to x$ as $k \to \infty$, then $\limsup_{k \to \infty} x_k = x$.

Remark:

Let $x \in \mathbf{R}$ and $\{x_k\}$ be a real sequence.

- (i)If $\limsup_{k \to \infty} x_k < x$, then $x_k < x$ for large k.
- (ii)If $\limsup_{k\to\infty} x_k > x$, then $x_k > x$ for infinitely many k.
- (iii)If $x_k \to x$ as $k \to \infty$, then $\limsup_{k \to \infty} x_k = x$.

(i)

Let $s := \limsup_{k \to \infty} x_k < x$ but suppose to the contrary that there exist natural numbers $k_1 < k_2 < \cdots$ such that $x_{k_j} \ge x$ for $j \in \mathbb{N}$. If $\{x_k\}$ is unbounded above, then ∞ is an adherent point of $\{x_k\}$ so $s = \infty$, a contradiction.

(i)

Let $s := \limsup_{k \to \infty} x_k < x$ but suppose to the contrary that there exist natural numbers $k_1 < k_2 < \cdots$ such that $x_{k_j} \ge x$ for $j \in \mathbf{N}$. If $\{x_k\}$ is unbounded above, then ∞ is an adherent point of $\{x_k\}$ so $s = \infty$, a contradiction.

(i)

Let $s := \limsup_{k \to \infty} x_k < x$ but suppose to the contrary that

there exist natural numbers $k_1 < k_2 < \cdots$ such that $x_{k_j} \ge x$ for $j \in \mathbb{N}$. If $\{x_k\}$ is unbounded above, then ∞ is an adherent point of $\{x_k\}$ so $s = \infty$, a contradiction.

(i)

Let $s := \limsup_{k \to \infty} x_k < x$ but suppose to the contrary that there exist natural numbers $k_1 < k_2 < \cdots$ such that $x_{k_j} \ge x$ for $j \in \mathbb{N}$. If $\{x_k\}$ is unbounded above, then ∞ is an adherent point of $\{x_k\}$ so $s = \infty$, a contradiction. If $\{x_{k_j}\}$ is bounded above by (by C), then it is bounded (since $x \le x_k \le C$ for all $j \in \mathbb{N}$). Hence, by the Bolzano-Weierstrass Theorem and the fact that $x_{k_j} \ge x$, $\{x_k\}$ has an adherent point $\ge x$, i.e., $s \ge x$, another contradiction

(i)

Let $s := \limsup_{k \to \infty} x_k < x$ but suppose to the contrary that there exist natural numbers $k_1 < k_2 < \cdots$ such that $x_{k_j} \ge x$ for $j \in \mathbb{N}$. If $\{x_k\}$ is unbounded above, then ∞ is an adherent point of $\{x_k\}$ so $s = \infty$, a contradiction. If $\{x_{k_j}\}$ is bounded above by (by C), then it is bounded (since $x \le x_k \le C$ for all $j \in \mathbb{N}$). Hence, by the Bolzano-Weierstrass Theorem and the fact that $x_{k_j} \ge x$, $\{x_k\}$ has an adherent point $\ge x$, i.e., $s \ge x$, another contradiction

(i)

Let $s := \limsup_{k \to \infty} x_k < x$ but suppose to the contrary that there exist natural numbers $k_1 < k_2 < \cdots$ such that $x_{k_j} \ge x$ for $j \in \mathbf{N}$. If $\{x_k\}$ is unbounded above, then ∞ is an adherent point of $\{x_k\}$ so $s = \infty$, a contradiction.

(i)

Let $s:=\limsup_{k\to\infty}x_k < x$ but suppose to the contrary that there exist natural numbers $k_1 < k_2 < \cdots$ such that $x_{k_j} \geq x$ for $j \in \mathbf{N}$. If $\{x_k\}$ is unbounded above, then ∞ is an adherent point of $\{x_k\}$ so $s=\infty$, a contradiction.

(i)

Let $s := \limsup x_k < x$ but suppose to the contrary that there exist natural numbers $k_1 < k_2 < \cdots$ such that $x_{k_i} \ge x$ for $j \in \mathbf{N}$. If $\{x_k\}$ is unbounded above, then ∞ is an adherent point of $\{x_k\}$ so $s=\infty$, a contradiction. If $\{x_{k_i}\}$ is bounded above by (by C), then it is bounded (since $x \le x_k \le C$ for all $j \in \mathbb{N}$). Hence, by the

(i)

Let $s:=\limsup_{k\to\infty}x_k < x$ but suppose to the contrary that there exist natural numbers $k_1 < k_2 < \cdots$ such that $x_{k_j} \geq x$ for $j \in \mathbf{N}$. If $\{x_k\}$ is unbounded above, then ∞ is an adherent point of $\{x_k\}$ so $s=\infty$, a contradiction.

If $\{x_{k_j}\}$ is bounded above by (by C), then it is bounded (since $x \le x_k \le C$ for all $j \in \mathbb{N}$). Hence, by the Bolzano-Weierstrass Theorem and the fact that $x_{k_j} \ge x$,

 $\{x_k\}$ has an adherent point $\geq x$, i.e., $s \geq x$, another contradiction.

(i)

Let $s := \limsup_{k \to \infty} x_k < x$ but suppose to the contrary that there exist natural numbers $k_1 < k_2 < \cdots$ such that $x_{k_j} \ge x$ for $j \in \mathbf{N}$. If $\{x_k\}$ is unbounded above, then ∞ is an adherent point of $\{x_k\}$ so $s = \infty$, a contradiction. If $\{x_{k_j}\}$ is bounded above by (by C), then it is bounded (since $x \le x_k \le C$ for all $j \in \mathbf{N}$). Hence, by the Bolzano-Weierstrass Theorem and the fact that $x_{k_j} \ge x$, $\{x_k\}$ has an adherent point $\ge x$, i.e., $s \ge x$, another

(i)

Let $s := \limsup_{k \to \infty} x_k < x$ but suppose to the contrary that there exist natural numbers $k_1 < k_2 < \cdots$ such that $x_{k_j} \ge x$ for $j \in \mathbf{N}$. If $\{x_k\}$ is unbounded above, then ∞ is an adherent point of $\{x_k\}$ so $s = \infty$, a contradiction. If $\{x_{k_j}\}$ is bounded above by (by C), then it is bounded (since $x \le x_k \le C$ for all $j \in \mathbf{N}$). Hence, by the Bolzano-Weierstrass Theorem and the fact that $x_{k_j} \ge x$, $\{x_k\}$ has an adherent point $\ge x$, i.e., $s \ge x$, another

(i)

Let $s:=\limsup_{k\to\infty}x_k < x$ but suppose to the contrary that there exist natural numbers $k_1 < k_2 < \cdots$ such that $x_{k_j} \geq x$ for $j \in \mathbf{N}$. If $\{x_k\}$ is unbounded above, then ∞ is an adherent point of $\{x_k\}$ so $s=\infty$, a contradiction.

Let $a_k \in \mathbf{R}$ and $r := \limsup |a_k|^{1/k}$.

$$k\rightarrow\infty$$

- (i) If r < 1, then $\sum a_k$ converges absolutely.
 - <=1 ∞
- (ii) If r > 1, then $\sum a_k$ diverges.

Let $a_k \in \mathbf{R}$ and $r := \limsup |a_k|^{1/k}$.

 $k\rightarrow\infty$

(i) If r < 1, then $\sum\limits_{i=1}^\infty a_k$ converges absolutely.

K=1 ∞

(ii) If r > 1, then $\sum_{k=1}^{\infty} a_k$ diverges.

Let $a_k \in \mathbf{R}$ and $r := \limsup |a_k|^{1/k}$.

 $k\rightarrow\infty$

(i) If r < 1, then $\sum_{k=1}^{\infty} a_k$ converges absolutely.

k=1 ∞

(ii) If r > 1, then $\sum_{k=1}^{\infty} a_k$ diverges.

Let $a_k \in \mathbf{R}$ and $r := \lim_{r} \sup |a_k|^{1/k}$.

(i) If r < 1, then $\sum_{k=1}^{\infty} a_k$ converges absolutely.

(ii) If r > 1, then $\sum_{k=1}^{\infty} a_k$ diverges.

Let $a_k \in \mathbf{R}$ and $r := \limsup_{r} |a_k|^{1/k}$.

- (i) If r < 1, then $\sum_{k=1}^{\infty} a_k$ converges absolutely.
- (ii) If r > 1, then $\sum_{k=1}^{\infty} a_k$ diverges.

Let $a_k \in \mathbf{R}$ and $r := \limsup_{k \to \infty} |a_k|^{1/k}$.

- (i) If r < 1, then $\sum_{k=1}^{\infty} a_k$ converges absolutely.
- (ii) If r > 1, then $\sum_{k=0}^{\infty} a_k$ diverges.

Let $a_k \in \mathbf{R}$ with $a_k \neq 0$ for large k and suppose that

$$r=\lim_{k\to\infty}\frac{|a_{k+1}|}{a_k}$$

- (i) If r < 1, then $\sum a_k$ converges absolutely.
- (ii) If r > 1, then $\sum_{k=1}^{\infty} a_k$ diverges.

Let $a_k \in \mathbf{R}$ with $a_k \neq 0$ for large k and suppose that

$$r=\lim_{k\to\infty}\frac{|a_{k+1}|}{a_k}$$

(i) If
$$r < 1$$
, then $\sum a_k$ converges absolutely.

(ii) If
$$r > 1$$
, then $\sum_{k=1}^{\infty} a_k$ diverges.

Let $a_k \in \mathbf{R}$ with $a_k \neq 0$ for large k and suppose that

$$r=\lim_{k\to\infty}\frac{|a_{k+1}|}{a_k}$$

- (i) If r < 1, then $\sum a_k$ converges absolutely.
- (ii) If r > 1, then $\sum_{k=1}^{\infty} a_k$ diverges.

Let $a_k \in \mathbf{R}$ with $a_k \neq 0$ for large k and suppose that

$$r=\lim_{k\to\infty}\frac{|a_{k+1}|}{a_k}$$

- (i) If r < 1, then $\sum_{k=1}^{\infty} a_k$ converges absolutely.
- (ii) If r > 1, then $\sum_{k=1}^{\infty} a_k$ diverges.

Let $a_k \in \mathbf{R}$ with $a_k \neq 0$ for large k and suppose that

$$r=\lim_{k\to\infty}\frac{|a_{k+1}|}{a_k}$$

- (i) If r < 1, then $\sum_{k=1}^{\infty} a_k$ converges absolutely.
- (ii) If r > 1, then $\sum_{k=1}^{\infty} a_k$ diverges.

Theorem (Ratio Test)

Let $a_k \in \mathbf{R}$ with $a_k \neq 0$ for large k and suppose that

$$r=\lim_{k\to\infty}\frac{|a_{k+1}|}{a_k}$$

exists as an extended real number.

- (i) If r < 1, then $\sum_{k=1}^{\infty} a_k$ converges absolutely.
- (ii) If r > 1, then $\sum_{k=1}^{\infty} a_k$ diverges.

Definition

A series $\sum\limits_{j=1}^{\infty}b_{j}$ is called a *rearrangment* of a series $\sum\limits_{k=1}^{\infty}a_{k}$ if and only if there is a 1-1 function f from N onto N such that

$$b_{f(k)} = a_k, \quad k \in \mathbb{N}$$

Definition

A series $\sum_{j=1}^{\infty} b_j$ is called a *rearrangment* of a series $\sum_{k=1}^{\infty} a_k$ if and only if there is a 1-1 function f from N onto N such that

$$b_{f(k)} = a_k, \quad k \in \mathbf{N}$$

If $\sum_{k=1}^{\infty} a_k$ converges absolutely and $\sum_{j=1}^{\infty} b_j$ is any

rearrangment of $\sum_{k=1}^{\infty} a_k$, then $\sum_{j=1}^{\infty} b_j$ converges and

$$\sum_{k=1}^{\infty} a_k = \sum_{j=1}^{\infty} b_j.$$

If $\sum_{k=1}^{\infty} a_k$ converges absolutely and $\sum_{j=1}^{\infty} b_j$ is any

rearrangment of $\sum_{k=1}^{\infty} a_k$, then $\sum_{j=1}^{\infty} b_j$ converges and

$$\sum_{k=1}^{\infty} a_k = \sum_{j=1}^{\infty} b_j.$$

Let
$$\epsilon > 0$$
. Set $S_n = \sum_{k=1}^n a_k$, $s = \sum_{k=1}^\infty a_k$, and $t_m = \sum_{j=1}^m b_j$,

 $n, m \in \mathbb{N}$. Since $\sum_{k=1}^{\infty} a_k$ converges absolutely, we can choose $N \in \mathbb{N}$ (see Corollary 6.9) such that

(7)
$$\sum_{k=N+1}^{\infty} |a_k| \le \frac{\epsilon}{2}.$$

$$|s_N - s| = \left| \sum_{k=N+1}^{\infty} a_k \right| \le \sum_{k=N+1}^{\infty} |a_k| < \frac{\epsilon}{2}$$

Let
$$\epsilon > 0$$
. Set $S_n = \sum_{k=1}^n a_k$, $s = \sum_{k=1}^\infty a_k$, and $t_m = \sum_{j=1}^m b_j$,

 $n, m \in \mathbb{N}$. Since $\sum_{k=1}^{\infty} a_k$ converges absolutely, we can choose $N \in \mathbb{N}$ (see Corollary 6.9) such that

(7)
$$\sum_{k=N+1}^{\infty} |a_k| \le \frac{\epsilon}{2}$$

$$(8) |s_N - s| = \left| \sum_{k=N+1}^{\infty} a_k \right| \le \sum_{k=N+1}^{\infty} |a_k| < \frac{\epsilon}{2}$$

Let
$$\epsilon > 0$$
. Set $S_n = \sum_{k=1}^n a_k$, $s = \sum_{k=1}^\infty a_k$, and $t_m = \sum_{j=1}^m b_j$,

 $n, m \in \mathbb{N}$. Since $\sum_{k=1}^{\infty} a_k$ converges absolutely, we can choose $N \in \mathbb{N}$ (see Corollary 6.9) such that

$$(7) \sum_{k=N+1}^{\infty} |a_k| \le \frac{\epsilon}{2}$$

$$|s_N - s| = \left| \sum_{k=N+1}^{\infty} a_k \right| \le \sum_{k=N+1}^{\infty} |a_k| < \frac{\epsilon}{2}$$

Let
$$\epsilon > 0$$
. Set $S_n = \sum_{k=1}^n a_k$, $s = \sum_{k=1}^\infty a_k$, and $t_m = \sum_{j=1}^m b_j$,

 $n, m \in \mathbb{N}$. Since $\sum_{k=1}^{\infty} a_k$ converges absolutely, we can

choose $N \in \mathbb{N}$ (see Corollary 6.9) such that

$$(7) \sum_{k=N+1}^{\infty} |a_k| \le \frac{\epsilon}{2}$$

$$|s_N - s| = \left| \sum_{k=N+1}^{\infty} a_k \right| \le \sum_{k=N+1}^{\infty} |a_k| < \frac{\epsilon}{2}$$

Let
$$\epsilon > 0$$
. Set $S_n = \sum_{k=1}^n a_k$, $s = \sum_{k=1}^\infty a_k$, and $t_m = \sum_{j=1}^m b_j$,

 $n, m \in \mathbb{N}$. Since $\sum_{k=1}^{\infty} a_k$ converges absolutely, we can choose $N \in \mathbb{N}$ (see Corollary 6.9) such that

(7)
$$\sum_{k=N+1}^{\infty} |a_k| \leq \frac{\epsilon}{2}.$$

$$|s_N - s| = \left| \sum_{k=N+1}^{\infty} a_k \right| \le \sum_{k=N+1}^{\infty} |a_k| < \frac{\epsilon}{2}$$

Let
$$\epsilon > 0$$
. Set $S_n = \sum_{k=1}^n a_k$, $s = \sum_{k=1}^\infty a_k$, and $t_m = \sum_{j=1}^m b_j$,

 $n, m \in \mathbf{N}$. Since $\sum_{k=1}^{\infty} a_k$ converges absolutely, we can choose $N \in \mathbf{N}$ (see Corollary 6.9) such that

(7)
$$\sum_{k=N+1}^{\infty} |a_k| \leq \frac{\epsilon}{2}.$$

(8)
$$|s_N - s| = \left| \sum_{k=N+1}^{\infty} a_k \right| \leq \sum_{k=N+1}^{\infty} |a_k| < \frac{\epsilon}{2}$$

$$b_{f(k)}=a_k, \quad k\in \mathbb{N}$$

$$\{a_1,\cdots,a_N\}\subseteq\{b_1,\cdots,b_M\}.$$

$$b_{f(k)} = a_k, \quad k \in \mathbf{N}$$

$$\{a_1,\cdots,a_N\}\subseteq\{b_1,\cdots,b_M\}$$

$$b_{f(k)} = a_k, \quad k \in \mathbf{N}$$

$$\{a_1,\cdots,a_N\}\subseteq\{b_1,\cdots,b_M\}.$$

$$b_{f(k)} = a_k, \quad k \in \mathbf{N}$$

$$\{a_1,\cdots,a_N\}\subseteq\{b_1,\cdots,b_M\}.$$

$$|t_m-s_N|\leq \sum_{k=N+1}^{\infty}|a_k|<\frac{\epsilon}{2}.$$

Hence by (8),

$$|t_m - s| \le |t_m - s_N| + |s_N - s| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

for $m \geq M$. Therefore,

$$s = \sum_{i=1}^{\infty} b_i$$
.

$$|t_m-s_N|\leq \sum_{k=N+1}^\infty |a_k|<\frac{\epsilon}{2}.$$

Hence by (8),

$$|t_m - s| \le |t_m - s_N| + |s_N - s| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

for $m \ge M$. Therefore,

$$s = \sum_{i=1}^{\infty} b_i$$
. \square

$$|t_m-s_N|\leq \sum_{k=N+1}^{\infty}|a_k|<\frac{\epsilon}{2}.$$

Hence by (8),

$$|t_m-s|\leq |t_m-s_N|+|s_N-s|<rac{\epsilon}{2}+rac{\epsilon}{2}=\epsilon$$

for $m \geq M$. Therefore,

$$s=\sum_{j=1}^\infty b_j$$
. \square

$$|t_m-s_N|\leq \sum_{k=N+1}^{\infty}|a_k|<rac{\epsilon}{2}.$$

Hence by (8),

$$|t_m-s|\leq |t_m-s_N|+|s_N-s|<rac{\epsilon}{2}+rac{\epsilon}{2}=\epsilon$$

for $m \geq M$. Therefore,

$$s=\sum_{j=1}^{\infty}b_{j}.$$

$$|t_m-s_N|\leq \sum_{k=N+1}^{\infty}|a_k|<\frac{\epsilon}{2}.$$

Hence by (8),

$$|t_m-s|\leq |t_m-s_N|+|s_N-s|<rac{\epsilon}{2}+rac{\epsilon}{2}=\epsilon$$

for $m \ge M$. Therefore,

$$s = \sum_{j=1}^{\infty} b_j$$
.

$$|t_m-s_N|\leq \sum_{k=N+1}^{\infty}|a_k|<\frac{\epsilon}{2}.$$

Hence by (8),

$$|t_m - s| \leq |t_m - s_N| + |s_N - s| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

for $m \geq M$. Therefore,

$$s = \sum_{j=1}^{\infty} b_j$$
. \square

Suppose that $a_k \in \mathbf{R}$ for $k \in \mathbf{N}$.

(i) If $\sum\limits_{k=1}^{\infty}$ a_k converges absolutely, then so do $\sum\limits_{k=1}^{\infty}$ $a_k{}^+$ and

$$\sum_{k=1}^{\infty} a_k^-. In fact,$$

$$\sum_{k=1}^{\infty} |a_k| = \sum_{k=1}^{\infty} a_k^+ + \sum_{k=1}^{\infty} a_k^- \text{ and } \sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} a_k^+ - \sum_{k=1}^{\infty} a_k^-$$

(ii)If $\sum_{k=1}^{\infty} a_k$ converges conditionally, then

$$\sum_{k=1}^{\infty} a_k^+ = \sum_{k=1}^{\infty} a_k^- = \infty$$

Suppose that $a_k \in \mathbf{R}$ for $k \in \mathbf{N}$.

(i) If $\sum\limits_{k=1}^{\infty}$ a_k converges absolutely, then so do $\sum\limits_{k=1}^{\infty}$ a_k and

$$\sum_{k=1}^{\infty} a_k^-. In fact,$$

$$\sum_{k=1}^{\infty} |a_k| = \sum_{k=1}^{\infty} a_k^+ + \sum_{k=1}^{\infty} a_k^- \text{ and } \sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} a_k^+ - \sum_{k=1}^{\infty} a_k^-$$

(ii) If $\sum_{k=1}^{\infty} a_k$ converges conditionally, then

$$\sum_{k=1}^{\infty} a_k^+ = \sum_{k=1}^{\infty} a_k^- = \infty$$

Suppose that $a_k \in \mathbf{R}$ for $k \in \mathbf{N}$.

(i) If $\sum_{k=1}^{\infty} a_k$ converges absolutely, then so do $\sum_{k=1}^{\infty} a_k^+$ and

$$\sum_{k=1}^{\infty} a_k^-. In fact,$$

$$\sum_{k=1}^{\infty} |a_k| = \sum_{k=1}^{\infty} a_k^+ + \sum_{k=1}^{\infty} a_k^- \text{ and } \sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} a_k^+ - \sum_{k=1}^{\infty} a_k^-$$

(ii) If $\sum_{k=1}^{\infty} a_k$ converges conditionally, then

$$\sum_{k=1}^{\infty} a_k^+ = \sum_{k=1}^{\infty} a_k^- = \infty$$

Suppose that $a_k \in \mathbf{R}$ for $k \in \mathbf{N}$.

(i) If $\sum_{k=1}^{\infty} a_k$ converges absolutely, then so do $\sum_{k=1}^{\infty} a_k^+$ and

 $\sum_{k=1}^{\infty} a_k^-.$ In fact,

$$\sum_{k=1}^{\infty} |a_k| = \sum_{k=1}^{\infty} a_k^+ + \sum_{k=1}^{\infty} a_k^- \text{ and } \sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} a_k^+ - \sum_{k=1}^{\infty} a_k^-$$

(ii) If $\sum_{k=1}^{\infty} a_k$ converges conditionally, then

$$\sum_{k=1}^{\infty} a_k^+ = \sum_{k=1}^{\infty} a_k^- = \infty$$

Suppose that $a_k \in \mathbf{R}$ for $k \in \mathbf{N}$.

(i) If $\sum_{k=1}^{\infty} a_k$ converges absolutely, then so do $\sum_{k=1}^{\infty} a_k^+$ and

 $\sum_{k=1}^{\infty} a_k^-.$ In fact,

$$\sum_{k=1}^{\infty} |a_k| = \sum_{k=1}^{\infty} a_k^+ + \sum_{k=1}^{\infty} a_k^- \text{ and } \sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} a_k^+ - \sum_{k=1}^{\infty} a_k^-$$

(ii) If $\sum\limits_{k=0}^{\infty}a_{k}$ converges conditionally, then

$$\sum_{k=1}^{\infty} a_k^+ = \sum_{k=1}^{\infty} a_k^- = \infty$$

Suppose that $a_k \in \mathbf{R}$ for $k \in \mathbf{N}$.

(i) If $\sum_{k=1}^{\infty} a_k$ converges absolutely, then so do $\sum_{k=1}^{\infty} a_k^+$ and

 $\sum_{k=1}^{\infty} a_k^-.$ In fact,

$$\sum_{k=1}^{\infty} |a_k| = \sum_{k=1}^{\infty} a_k^+ + \sum_{k=1}^{\infty} a_k^- \text{ and } \sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} a_k^+ - \sum_{k=1}^{\infty} a_k^-$$

(ii)If $\sum_{k=1}^{\infty} a_k$ converges conditionally, then

$$\sum_{k=1}^{\infty} a_k^+ = \sum_{k=1}^{\infty} a_k^- = \infty.$$

By definition, $\dfrac{a_k^+=(|a_k|+a_k)}{2}$. Since both $\sum\limits_{k=1}^{\infty}|a_k|$ and

 $\sum_{k=1}^{\infty} a_k$ converge, it follows from Theorem 6.10 that

$$\sum_{k=1}^{\infty} a_k^+ = \frac{1}{2} \sum_{k=1}^{\infty} |a_k| + \frac{1}{2} \sum_{k=1}^{\infty} a_k$$

converges. Similarly,

$$\sum_{k=1}^{\infty} a_k^- = \frac{1}{2} \sum_{k=1}^{\infty} |a_k| - \frac{1}{2} \sum_{k=1}^{\infty} a_k$$

By definition, $\frac{a_k^+ = (|a_k| + a_k)}{2}$. Since both $\sum_{k=1}^{\infty} |a_k|$ and

 $\sum_{k=1}^{\infty} a_k$ converge, it follows from Theorem 6.10 that

$$\sum_{k=1}^{\infty} a_k^+ = \frac{1}{2} \sum_{k=1}^{\infty} |a_k| + \frac{1}{2} \sum_{k=1}^{\infty} a_k$$

converges. Similarly,

$$\sum_{k=1}^{\infty} a_k^- = \frac{1}{2} \sum_{k=1}^{\infty} |a_k| - \frac{1}{2} \sum_{k=1}^{\infty} a_k$$

By definition, $\frac{a_k^+ = (|a_k| + a_k)}{2}$. Since both $\sum_{k=1}^{\infty} |a_k|$ and

 $\sum_{k=1}^{\infty} a_k$ converge, it follows from Theorem 6.10 that

$$\sum_{k=1}^{\infty} a_k^+ = \frac{1}{2} \sum_{k=1}^{\infty} |a_k| + \frac{1}{2} \sum_{k=1}^{\infty} a_k$$

converges. Similarly,

$$\sum_{k=1}^{\infty} a_k^- = \frac{1}{2} \sum_{k=1}^{\infty} |a_k| - \frac{1}{2} \sum_{k=1}^{\infty} a_k$$

By definition, $\frac{a_k^+ = (|a_k| + a_k)}{2}$. Since both $\sum_{k=1}^{\infty} |a_k|$ and

 $\sum_{k=1}^{\infty} a_k$ converge, it follows from Theorem 6.10 that

$$\sum_{k=1}^{\infty} a_k^{+} = \frac{1}{2} \sum_{k=1}^{\infty} |a_k| + \frac{1}{2} \sum_{k=1}^{\infty} a_k$$

converges. Similarly,

$$\sum_{k=1}^{\infty} a_k^- = \frac{1}{2} \sum_{k=1}^{\infty} |a_k| - \frac{1}{2} \sum_{k=1}^{\infty} a_k$$

By definition, $\frac{a_k^+ = (|a_k| + a_k)}{2}$. Since both $\sum_{k=1}^{\infty} |a_k|$ and

 $\sum_{k=1}^{\infty} a_k$ converge, it follows from Theorem 6.10 that

$$\sum_{k=1}^{\infty} a_k^+ = \frac{1}{2} \sum_{k=1}^{\infty} |a_k| + \frac{1}{2} \sum_{k=1}^{\infty} a_k$$

converges. Similarly,

$$\sum_{k=1}^{\infty} a_k^- = \frac{1}{2} \sum_{k=1}^{\infty} |a_k| - \frac{1}{2} \sum_{k=1}^{\infty} a_k$$

By definition, $\frac{a_k^+ = (|a_k| + a_k)}{2}$. Since both $\sum_{k=1}^{\infty} |a_k|$ and

 $\sum_{k=1}^{\infty} a_k$ converge, it follows from Theorem 6.10 that

$$\sum_{k=1}^{\infty} a_k^{+} = \frac{1}{2} \sum_{k=1}^{\infty} |a_k| + \frac{1}{2} \sum_{k=1}^{\infty} a_k$$

converges. Similarly,

$$\sum_{k=1}^{\infty} a_k^- = \frac{1}{2} \sum_{k=1}^{\infty} |a_k| - \frac{1}{2} \sum_{k=1}^{\infty} a_k$$

By definition, $\frac{a_k^+ = (|a_k| + a_k)}{2}$. Since both $\sum_{k=1}^{\infty} |a_k|$ and

 $\sum_{k=1}^{\infty} a_k$ converge, it follows from Theorem 6.10 that

$$\sum_{k=1}^{\infty} a_k^+ = \frac{1}{2} \sum_{k=1}^{\infty} |a_k| + \frac{1}{2} \sum_{k=1}^{\infty} a_k$$

converges. Similarly,

$$\sum_{k=1}^{\infty} a_k^- = \frac{1}{2} \sum_{k=1}^{\infty} |a_k| - \frac{1}{2} \sum_{k=1}^{\infty} a_k$$

By definition, $\frac{a_k^+ = (|a_k| + a_k)}{2}$. Since both $\sum_{k=1}^{\infty} |a_k|$ and

 $\sum_{k=1}^{\infty} a_k$ converge, it follows from Theorem 6.10 that

$$\sum_{k=1}^{\infty} a_k^+ = \frac{1}{2} \sum_{k=1}^{\infty} |a_k| + \frac{1}{2} \sum_{k=1}^{\infty} a_k$$

converges. Similarly,

$$\sum_{k=1}^{\infty} a_k^- = \frac{1}{2} \sum_{k=1}^{\infty} |a_k| - \frac{1}{2} \sum_{k=1}^{\infty} a_k$$

$$\sum_{k=1}^{\infty} a_k^- = \sum_{k=1}^{\infty} a_k^+ - \sum_{k=1}^{\infty} a_k$$

converges. Thus,

$$\sum_{k=1}^{\infty} |a_k| = \sum_{k=1}^{\infty} a_k^+ + \sum_{k=1}^{\infty} a_k^-$$

Suppose that part (ii) is false. By symmetry we may

suppose that $\sum_{k=1}^{\infty} a_k^+$ converges. Since $\sum_{k=1}^{\infty} a_k$ converges, it follows from (10) that

$$\sum_{k=1}^{\infty} a_k^- = \sum_{k=1}^{\infty} a_k^+ - \sum_{k=1}^{\infty} a_k$$

converges. Thus,

$$\sum_{k=1}^{\infty} |a_k| = \sum_{k=1}^{\infty} a_k^+ + \sum_{k=1}^{\infty} a_k^-$$

it follows from (10) that

$$\sum_{k=1}^{\infty} a_k^- = \sum_{k=1}^{\infty} a_k^+ - \sum_{k=1}^{\infty} a_k$$

converges. Thus,

$$\sum_{k=1}^{\infty} |a_k| = \sum_{k=1}^{\infty} a_k^+ + \sum_{k=1}^{\infty} a_k$$

it follows from (10) that

$$\sum_{k=1}^{\infty} a_k^- = \sum_{k=1}^{\infty} a_k^+ - \sum_{k=1}^{\infty} a_k$$

converges. Thus,

$$\sum_{k=1}^{\infty} |a_k| = \sum_{k=1}^{\infty} a_k^+ + \sum_{k=1}^{\infty} a_k^-$$

$$\sum_{k=1}^{\infty} a_k^{-} = \sum_{k=1}^{\infty} a_k^{+} - \sum_{k=1}^{\infty} a_k$$

converges. Thus,

$$\sum_{k=1}^{\infty} |a_k| = \sum_{k=1}^{\infty} a_k^+ + \sum_{k=1}^{\infty} a_k$$

$$\sum_{k=1}^{\infty} a_k^{-} = \sum_{k=1}^{\infty} a_k^{+} - \sum_{k=1}^{\infty} a_k$$

converges. Thus,

$$\sum_{k=1}^{\infty} |a_k| = \sum_{k=1}^{\infty} a_k^+ + \sum_{k=1}^{\infty} a_k^-$$

$$\sum_{k=1}^{\infty} a_k^{-} = \sum_{k=1}^{\infty} a_k^{+} - \sum_{k=1}^{\infty} a_k$$

converges. Thus,

$$\sum_{k=1}^{\infty} |a_k| = \sum_{k=1}^{\infty} a_k^+ + \sum_{k=1}^{\infty} a_k^-$$

Theorem (Riemann)

Let $x \in \mathbf{R}$. If $\sum_{k=1}^{\infty} a_k$ is conditionally convergent, then there

is a rearrangement of $\sum_{k=1}^{\infty} a_k$ that converges to x.

Theorem (Riemann)

Let $x \in \mathbf{R}$. If $\sum_{k=1}^{\infty} a_k$ is conditionally convergent, then there

is a rearrangement of $\sum_{k=1}^{\infty} a_k$ that converges to x.

Thank you.